Framework for Simulating the Human Behavior
for Intelligent Virtual Agents. Part I:
Framework Architecture

F. Luengo!? and A. Iglesias®*

! Department of Computer Science, University of Zulia, Post Office Box #527,
Maracaibo, Venezuela
fluengo@cantv.net
2 Department of Applied Mathematics and Computational Sciences, University of
Cantabria, Avda. de los Castros, s/n, E-39005, Santander, Spain
iglesias@unican.es
http://personales.unican.es/iglesias

Abstract. This paper is the first in a series of two papers (both in-
cluded in this volume) describing a new framework for simulating the
human behavior for intelligent virtual agents. This first paper focuses on
the framework architecture and implementation issues. Firstly, we de-
scribe some requirements for such a framework to simulate realistically
the human behavior. Then, the framework architecture is discussed. Fi-
nally, some strategies concerning the implementation of our framework
on single and distributed CPU environments are presented.

1 Introduction

One of the most exciting fields in Computer Graphics is the simulation and
animation of intelligent virtual agents (IVAs) evolving within virtual 3D worlds.
This field, also known as Artificial Life, has received increasing attention during
the last few years [12314/5J61121T4]. Most of this interest has been motivated by
its application to the entertainment industry, from virtual and augmented reality
in digital movies to video games. However, the range of potential applications
also includes Architecture, Science, Education, advertising and many others.

One of the most interesting topics in the field concerns the realistic animation
of the behavior of IVAs emulating the human beings. The challenge here is to
provide the virtual agents with a high degree of autonomy, so that they can
evolve freely with a minimal input from the animator. In addition, this evolution
is expected to be realistic, in the sense that the IVAs must behave according to
reality from the standpoint of a human observer.

In a previous paper [I0] the authors presented a new behavioral framework
able to reproduce a number of the typical features of the human behavior. The
system allows the IVAs to interact among them and with the environment in a
quite realistic way. A subsequent paper [8] extended the original approach by

* Corresponding author

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3039, pp. 229 2004.
© Springer-Verlag Berlin Heidelberg 2004

230 F. Luengo and A. Iglesias

introducing some functions and parameters describing new internal, physical and
mental states. The performance of that framework was also discussed in [11].

We would like to remark, however, that such a framework was exclusively
designed for behavioral simulation purposes only and, consequently, it can be
substantially improved in several directions. For example, neither the graphical
output nor the computational efficiency did play a significant role in its design.
On the other hand, it was pointed out that the use of Artificial Intelligence
(AI) tools, such as neural networks and expert systems, can improve the perfor-
mance of the behavioral animation schemes dramatically [7/T5]. These and other
extensions are the core of the present work.

This is the first in a series of two papers (both included in this volume)
describing a new framework for simulating the human behavior for intelligent
virtual agents. Although originally based on that introduced in [I0], the cur-
rent framework incorporates so many additions and improvements that it can
actually be considered as a new one. Its new features concern fundamentally to
the architecture and the behavioral engine. The new architecture is based on the
idea of decomposing the framework into the physical and the behavioral systems
and, subsequently, into their respective subsystems which carry out more specific
tasks. In addition, specialized computing tools have been applied to these sub-
systems, so that the performance has been greatly improved. On the behavioral
engine, powerful Artificial Intelligence techniques have been applied to simulate
the different behavioral processes. As it will be shown later, these AI tools pro-
vide the users with a higher level of realism. Because of limitations of space, the
architecture of the new framework will be described in this first paper, while the
second one will focus on the application of Al tools to the behavioral engine.

The structure of this paper is as follows: in Sect.] we describe the main
requirements of a framework to simulate the human behavior for IVAs. Then,
Sect.Bldescribes the architecture to fulfill those requirements. The agent’s design,
software tools and programming environments that have been used to implement
such an architecture are also discussed in this section. Finally, Sect. Bl presents
some strategies concerning the implementation of our framework on single and
distributed CPU environments.

2 Framework Requirements

In this work, an Intelligent Virtual Agent (IVA) is the graphical representation of
a virtual creature able to emulate the behavior of a living being autonomously,
i.e., without the animator’s intervention. Due to its inherent complexity, it is
convenient to decompose our framework into different (simpler) components,
which can be rather assigned to one of the following sytems:

1. the physical system (PS): it is responsible for the physical elements, including
the 3D graphical representation of virtual agents, their motion and animation
and the interaction among them and with the world’s objects.

2. the behavioral engine (BE): it will provide the agents with emotions, feelings,
thoughts, needs and beliefs (about themselves, others or the environment).
Depending on their particular values, different plans will be designed by

Framework for Simulating the Human Behavior. Part I 231

this engine in order to accomplish the agents’ goals. Although the human
senses (vision, hearing, etc.) are usually associated with physical parts of our
body (eyes, ears, etc.), the cognitive process itself happens at our brain, so
mental routines related to perception are also included in this component. By
the same reason, the different cognitive tasks related to the agent’s motion
control are performed at this behavioral engind!]

Reasons for this decomposition become clear if you think about our ability
to distinguish between what we are physically and mentally. In fact, we can ea-
sily assign any physical object of the 3D world (even our own body itself) to
the physical system, while our emotions, beliefs, feelings or thoughts would be
assigned to the behavioral engine. This separation is also extremely useful from
a computational point of view. On one hand, it allows the programmer to focus
on the specific module he/she is dealing with at one time. Clearly, it makes no
sense to worry about the graphical motion routines when you are modifying the
behavioral ones, and vice versa. On the other hand, specialized programming
tools can be independently applied to each module. As a consequence, the fra-
mework’s performance can be drastically optimized, provided that an adequate
choice of such tools is made.

Note, however, that both systems must be strongly interconnected so that
each modification in the behavioral engine (for example, if the agent is becoming
tired his/her next goal might be to look for a seat to sit down) is subsequently
reflected on the physical counterpart (the physical motion towards the seat) and
vice versa, just as our body and brain also work as a whole. To this aim, some
kind of communication between both systems must be defined. Furthermore, the
better we define how these systems work and how they communicate with each
other, the more effective the framework will be.

Of course, each system can be broken up into smaller subsystems, associated
at its turn with more specific routines such as obstacle avoidance or path deter-
mination for the physical system, or goals or internal states for the behavioral
engine. By this way, we can either work on each subsystem individually or hand
out them to different people to work on. However, we should be careful with the
number of levels in this sequence: indeed, too few levels will yield large codes
difficult to test and debug, while too many levels will unnecesarily increase the
complexity of the system.

3 Framework Architecture and Tools

3.1 Virtual Objects

The virtual agents evolve in a 3D virtual world which also comprises different
kinds of objects to interact with (see Fig.[I). Basically, they can be classified into
two groups: static objects and smart objects. By smart objects we understand
those objects whose shape, location and status can be modified over time, as

! Note that the physical motion routines themselves still belong to the physical system.
What is actually included in the behavioral engine is the simulation of the mental
process that yields the orders for motion from the brain to the muscles.

232 F. Luengo and A. Iglesias

opposed to the static ones. This concept, already used in previous approaches
[9/13] with a different meaning, has shown to be extremely helpful to define the
interactions between the virtual agents and the objects. For example, a table
lamp or a radio are smart objects simply because they might be turned on/off
(status set to on/off) and so are a pencil or a bottle (as they can be relocated).
We point out that saying that an object is static does not mean it has null
influence on the agents’ actions. For instance, a tree is a static object but it
should be considered for tasks such as collision avoidance and path planning.

L

seesaw

Fig. 1. The 3D world includes different kinds of virtual objects and agents

3.2 Behavioral Engine

Because the behavioral engine also includes some behavioral routines that stron-
gly influence the graphical output (such as those for perception), we decided to
split it up into the physical control system (PCS) and the behavioral system (BS),
as shown in Fig.

The PCS comprises two subsystems for perception and motion control tasks.
The perception subsystem obtains information from the graphical environment
(the virtual world) by identifying its elements (static objects, smart objects,
other agents) and locations. In other words, it captures the geometry of the vir-
tual world as it is actually done by the human beings through their senses, in
which the perception subsystem is based on. On the other hand, the motion con-
trol subsystem is responsible for the conversion of the agents’ plans into physical
actions, as described below. At its turn, the BS (that will be described in detail
in a second paper in sequence) includes several subsystems designed to perform
different cognitive processes. The arrows in Fig. [2 show the information flow:
the perception subsystem captures information from the virtual world which is
subsequently sent to the behavioral system to be processed internally. The cor-
responding output is a set of orders received by the motion control subsystem,

Framework for Simulating the Human Behavior. Part 1 233

Perception
+ subsystem | " O
o 00 0 0
Motion
subsystem O

Physical Control Behavioral
system system

3D World

Behavioral Engine
Fig. 2. Scheme of the behavioral engine of a virtual agent

which transform them into agent’s physical actions animated by the physical
systenﬂ just as the orders of our brain are sent to our muscles.

We would like to remark that this behavioral engine decomposition into the
PCS and the BS is both reasonable and useful. It is reasonable because agents’
reactions and decisions are mostly determined by their “personality” rather than
by their physical body. Of course, the physical is also involved in “who we are”,
but our personality lie in another “level” of ourselves and should be analyzed
separately. The usefulness comes from the fact that it is possible to reuse the
BE for different virtual worlds. This leads to the concept of adaptation: a reali-
stic simulation of a human being implies that the BE must be able to perform
adjustments by itself in order to adapt to the changing environment. Similarly,
different BE can be applied to the same virtual world. This leads to the concept
of individuality: no two virtual agents are exactly the same as they have their
own individual personality. In computational terms, this means that each virtual
agent has his/her own behavioral engine, which is different from any other else.

3.3 Agents Design

As usual in Object Oriented Programming (OOP) environments, each virtual
agent is represented by a class called AVA, consisting of attributes and methods.
In our case, the attributes are: AgID, that identifies the agent, AgSt that accounts
for the current status of the agent, and AgVal that stores some parameters for
rendering purposes (position, direction, etc.). The methods include the Render
method for graphical representation and those for updating the agent’s attributes
as a consequence of interactions with objects. Moreover, the class AVA encap-
sulates the attributes and methods related to the perception and the motion
control subsystems. Additional methods are considered for the communication

2 We should warn the reader about the possible confusion between “physical system”
(PS) and “physical control system” (PCS). The PCS is a part of the behavioral
engine, while the PS contains the routines for the graphical representation and ani-
mation of the virtual world.

234 F. Luengo and A. Iglesias

from the perception subsystem to the behavioral system (Send) and from it to
the motion control subsystem (CallBack). Finally, the method Think is used to
trigger the behavioral process.

3.4 Programming Languages and Environments

Regarding the programming languages, Table [[] shows the different architecture
modules of our framework as well as the software tools and programming envi-
ronments used to implement such modules. The first module is the Kernel, which
drives the main sequence of animation. The use of a powerful graphical library
would allow the programmer to improve graphics quality dramatically with re-
latively little effort. By this reason, the kernel has been implemented in Open
GL by using the programming environment GLUT (Open GL Utility Toolkit).
The graphical representation of the virtual world (the physical system) is also
a CPU demanding task. Therefore, we decided to use C++ to assure the best
performance. Another reason for this choice is the excellent integration of Open
GL with the C++ layer (to this purpose, we used the Visual C++ environment
as programming framework). This combination of C++ with Open GL has also
been used for the User Interface.

Table 1. Architecture modules of our framework and the software tools and program-
ming environments used to implement them

l Module [Software tools [Programming environment ‘
Kernel Open GL GLUT
User Interface C++ & Open GL Visual C++ & GLUT
Physical System C++ & Open GL Visual C++ & GLUT
Physical Control System C++ Visual C++
Behavioral System C++ & Prolog Visual C++ & Amzi! Prolog

As mentioned above, our framework consists of a physical system (PS) and
a behavioral engine (BE). While the combination of C++ and Open GL works
well for the physical system, the BS requires more specific tools. In particular, it
has been implemented in C++ and Prolog by using the programming environ-
ment “Amzi! Prolog” (developed, at its turn, in C language). At our experience,
Amzi! Prolog is an excellent tool to generate optimized code which can easily
be invoked from C/C++ via Dynamic Link Libraries (DLLs), providing an op-
timal communication between the PCS and the BS for standalone applications.
Furthermore, this choice provides a good solution for TCP/IP communication
protocols for distributed environments, as discussed in Sect. [l

Framework for Simulating the Human Behavior. Part I 235

4 Implementation on Single and Distributed CPU
Environments

The framework presented in the previous sections can be developed by using only
a processor or several ones. For the first case, we can either use a dynamic list of
objects AVA (as shown in Fig. Blleft)) or to run each AVA in a separate process
or thread (see Fig. Blright)). In both cases, we must wait until all AVAs have
executed to get the next animation frame. Note also that the communication
between the object AVA and the behavioral system is achieved via DLLs to
optimize the execution speed, avoiding other alternatives such as TCP /IP, best
suited for distributed systems and networks.

| DLL
List of (AVA\\ TAVAYN TAVAY

AVAs ——~_ -~ ~_ —"—~_ _Object/ ‘ Object,/ """
S AVA AVA AVA Ob]ec_/ \bjECT) \ OI::ect /
2 Sl Hice Treads Controller |

Fig. 3. Framework architectures for a single processor

Figure @ shows the framework architecture for distributed systems. In this
case, we use threads to run the different AVAs, which are connected to their
corresponding BS by using sockets and TCP/IP connection. Note that parallel
programming can also be applied here. For instance, we can assign each IVA
behavioral system to a single processor for maximal performance.

W &s|IA 8s ---- R BS
=\ ¥ = /

\ \ TCP/IP

‘ Treads Controller

Fig. 4. Framework architecture for distributed systems

236 F. Luengo and A. Iglesias

The previous single and distributed CPU architectures have been successfully
implemented on PC platform (Pentium IIT processor). Technical details on im-
plementation have had to be omitted because of limitations of space and will
be reported elsewhere. In the second paper some interesting questions regarding
the behavioral engine will be discussed.

References

1. Badler, N.I., Barsky, B., Zeltzer, D. (eds.): Making Them Move. Morgan Kauf-
mann, San Mateo, CA (1991)

2. Badler, N.I., Phillips, C.B., Webber, B.L.: Simulating Humans: Computer Graphics
Animation and Control. Oxford University Press, Oxford (1993)

3. Blumberg, B.M., Galyean, T.A.: Multi-level direction of autonomous creatures for
real-time virtual environments. Proc. of SIGGRAPH’95, ACM, New York (1995)
47-54

4. Cerezo, E., Pina, A., Seron, F.J.: Motion and behavioral modeling: state of art and
new trends. The Visual Computer, 15 (1999) 124-146

5. Funge, J., Tu, X. Terzopoulos, D.: Cognitive modeling: knowledge, reasoning and
planning for intelligent characters, Proceedings of SIGGRAPH’99, ACM, New York
(1999) 29-38

6. Granieri, J.P., Becket, W., Reich, B.D., Crabtree, J., Badler, N.I.: Behavioral con-
trol for real-time simulated human agents, Symposium on Interactive 3D Graphics,
ACM, New York (1995) 173-180

7. Grzeszczuk, R., Terzopoulos, D., Hinton, G.: NeuroAnimator: fast neural network
emulation and control of physics-based models. Proceedings of SIGGRAPH’98,
ACM, New York (1998) 9-20

8. Iglesias A., Luengo, F.: Behavioral Animation of Virtual Agents. Proc. of the
Fourth International Conference on Computer Graphics and Artificial Intelligence,
3IA (2003) 99-114

9. Kallmann, M.E., Thalmann, D.: A behavioral interface to simulate agent-object
interactions in real-time, Proceedings of Computer Animation’99, IEEE Computer
Society Press, Menlo Park (1999) 138-146

10. Luengo, F., Iglesias A.: A new architecture for simulating the behavior of virtual
agents. Springer-Verlag, Lecture Notes in Computer Science, 2657 (2003) 935-944

11. Luengo, F., Iglesias A.: Animating Behavior of Virtual Agents: the Virtual Park.
Springer-Verlag, Lecture Notes in Computer Science, 2668 (2003) 660-669

12. Maes, P., Darrell, T., Blumberg, B. Pentland, A.: The alive system: full-body in-
teraction with autonomous agents, Proceedings of Computer Animation’95, IEEE
Computer Society Press, Menlo Park (1995) 11-18

13. Monzani, J.S., Caicedo, A., Thalmann, D.: Integrating behavioral animation tech-
niques, Proceedings of EUROGRAPHICS’2001, Computer Graphics Forum, 20(3)
(2001) 309-318

14. Perlin, K., Goldberg, A.: Improv: a system for scripting interactive actors in virtual
worlds, Proceedings of SIGGRAPH’96, ACM, New York (1996) 205-216

15. Van de Panne, M., Fiume, E.: Sensor-actuator networks, Proceedings of SIG-
GRAPH’93, Computer Graphics 27 (1993) 335-342

	Introduction
	Framework Requirements
	Framework Architecture and Tools
	Virtual Objects
	Behavioral Engine
	Agents Design
	Programming Languages and Environments

	Implementation on Single and Distributed CPU Environments

