Framework for Simulating the Human Behavior
for Intelligent Virtual Agents.
Part 1I: Behavioral System

F. Luengo!? and A. Iglesias?*

! Department of Computer Science, University of Zulia, Post Office Box #527,
Maracaibo, Venezuela
fluengo@cantv.net
2 Department of Applied Mathematics and Computational Sciences, University of
Cantabria, Avda. de los Castros, s/n, E-39005, Santander, Spain
iglesias@unican.es
http://personales.unican.es/iglesias

Abstract. This paper is the second in a series of two papers (both inclu-
ded in this volume) describing a new framework for simulating the human
behavior for intelligent virtual agents. This second paper focuses on the
application of Artificial Intelligence (AI) techniques to the simulation of
the human cognitive process. The paper discusses some important issues
involved in this process, such as the representation and identification of
objects, the information acquisition and its conversion into knowledge
and the learning process. The paper also describes how some standard
AT techniques (expert systems, neural networks) have been applied to
tackle these problems.

1 Introduction

In the first part of this work we have reviewed some features of the architecture of
a new framework for simulating the human behavior for intelligent virtual agents.
In addition, we analyzed the software and programming environments used to
implement such a framework, with emphasis on the graphical part. Fortunately,
the huge number of software applications for 3D graphics and animation allow
us to apply well-known standarized tools. The challenge is to develop a similar
“machinery” for human behavior simulation.

So far, little effort was placed upon the simulation of the human cognitive
processes (learning, memory, recognition, etc.) from the viewpoint of Computer
Graphics. Notable exceptions are the works in [234I7/89UT0]. In contrast, this
is the primary goal of the Artificial Intelligence (AI) field. After all, most of the
AT techniques (such as neural networks or expert systems) are based on the idea
of reproducing the structure and behavior of the human brain. Consequently, it
seems very reasonable to apply them to the simulation of the intelligent virtual
agents (IVAs). This is actually the core of this paper. In particular, the paper

* Corresponding author

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3039, pp. 237-Z44] 2004.
© Springer-Verlag Berlin Heidelberg 2004

238 F. Luengo and A. Iglesias

discusses some important issues involved in this process, such as the representa-
tion and identification of objects, the information acquisition and its conversion
into knowledge and the learning process. The paper also describes how some
standard Al techniques (expert systems, neural networks) have been applied to
tackle these problems.

2 General Scheme of the Behavioral System

The realistic simulation of the behavior of virtual agents implies that they must
be able to carry out an intelligent exploration of the surrounding environment.
By intelligent we mean that the IVAs need to walk through three main steps:

1. to identify the different objects from the virtual world (object recognition)

2. to obtain information from the environment (information acquisition)

3. this information is subsequently processed so that the agents can effectively
acquire new knowledge and/or update the current one (knowledge acquisi-
tion).

Simulation Framework
Virtual World

IVA Behavioral Engine
Internal

Goals Subsystem| States
| Subsystem
l:l l:l D D Anxiety

I l Tiredness
Analyzer
subsystem

Boredom
Knowledge Motor

Motion
subsystem

Sensors

WAVAY

Perception
subsystem

Physical Control System I IVA Behavioral System l

S ~/

Fig. 1. General scheme for information acquisition and its conversion into knowledge

All these tasks are performed by specific subsystems and modules, as depic-
ted in Fig. [l The perception subsystem (PSB) applies routines to identify the
objects and to extract information from the 3D world. Such information is sub-
sequently sent to the analyzer subsystem, where the information is processed
and transformed into knowledge. The internal states subsystem handles the in-
formation about agents personality and his/her “emotional state”. With that

Framework for Simulating the Human Behavior. Part 11 239

information, the goal engine subsystem updates the goals list, thus determining
what the agent wants to do. Finally, the action engine subsystem takes a deci-
sion about the best way to achieve those goals, updates the agents status, and
sends that information to the motion subsystem to complete the animation. The
following paragraphs will analyze how these tasks have been accomplished.

2.1 Objects Representation and Identification

In order to interact with the 3D world, the IVA must be able to identify its ele-
ments, regardless their nature (smart objects, static objects, other agents) and
properties (location, status, etc). These properties provide essential information,
as they will determine the kind of agent-object interaction and, consequently, the
future agent’s actions. On the other hand, we would like this object representa-
tion to be as simple as possible. This feature is required for efficient manipulation
and memory storage.

In this paper we use a representation scheme based on biological concepts
such as chromosome and gene. Each object of the 3D world is represented
by what we call a chromosome. Roughly speaking, it is a collection of multi-
component sequences which, at their turn, comprise single fields called genes,
as shown in Fig. 2l For example, the chromosome in this figure consists of m
sequences and n genes (n > m).

(N
sequence / sequence 2 sequence 3 sequence m
— g N\ 0\
eeooe
gene / gene 2 gene 3 gene4 gene 5 gene 6 gene n-1 genen
CHROMOSOME
\ J

Fig. 2. Structure of the chromosome representing the objects of the 3D world

Each sequence corresponds to a certain characteristic of the object. The
sequences are sorted by following a hierarchical structure, as shown in Fig.
In this work, we consider that the objects’ chromosomes are composed of four
sequences, from the most general to the most specific one: the first sequence
consists of three genes that account for objects, animals and people (sequences
[1,0,0], [0,1,0] and [0,1,1], respectively). The second sequence, also with three
genes, adds more information about general characteristics, such as the kind of
object, animal or person. In this example, the category person is subsequently
subdivided into kid, adult and elderly. The third sequence consists of one gene

240 F. Luengo and A. Iglesias

and is associated with the status, size or gender (for object, animal or person,
respectively). Finally, the last sequence comprises five genes to store the object’s
ID, in order to identify an specific element within its own class.

- — ™
| object | animal | person | sequence 1
- C
) H
CIT) LT | chil [adule | elderly | | equence2 | R
B (0]
_ M
(0]
male | female sequence 3 | S
J (0]
- M
E
D sequence 4

Fig. 3. Sequences of the chromosome

For example, the first woman in our environment is represented by the chro-
mosome [0,1,1,1,1,0,1,0,0,0,0,1]. This representation is useful for identification,
provided that a mathematical function to compute the distance between two ar-
bitrary elements is defined. Given a pair of elements, the goal of such a function
is to determine how close these elements are (in other words, such a function
constitutes “de facto” a criterion for similarity). The distance function between
two elements A and B at a sequence j is defined as follows:

k
dist(j, A, B) = 1 3" 14] ~ B 1)
i=1

where Ag denotes the ith gene at sequence j for the chromosome A, and k
denotes the number of genes of such a sequence. Note that we can think of
sequences in terms of levels in the tree displayed in Fig. 3l The sequence j is
simply the level j down the tree at which it appears, with the top of the tree
as sequence 1. We will say that two elements A and B are similar at sequence
(or at level) j if dist(j, A, B) = 0. Further, they are similar up to sequence s if
dist(r,A,B) = 0, Vr < s. Note that the hierarchical structure described above
imply that an arbitrary object is closer to that minimizing the distance at earlier
sequences. For instance, an adult is represented by the sequence [1, 1, 0] which
is in-between the sequence for kids [1,0,0] and for elder people [0, 1,0], since

1 2
dist(adult, kid) = dist(adult, elder) = 3 whereas dist(kid, elder) = 3 meaning

that an adult is closer to an elder person than a kid. Therefore, Eq. () provides
an accurate procedure to classify objects at a glance, by simply comparing them
sequentially at each level.

Framework for Simulating the Human Behavior. Part 11 241

2.2 Information Acquisition

In this step, the analyzer subsystem receives the world information acquired by
the PSB and then analyzes it to update the knowledge base accordingly. As ex-
plained in the first paper, the perception subsystem has been developed in a soft-
ware environment different than that for the behavioral system (BS). Therefore,
it is extremely important to define clearly a communication protocol for infor-
mation exchange between both systems. In that protocol, carrying-information
comprises four fields (see Fig. H]): a parameter specifying the information source
(vision, hearing), the object ID or chromosome (see Sect. [Z] for details), addi-
tional information about the location, status, etc. and a parameter called impact
index. This last parameter is added by the analyzer to account for the impact
of a new information on the agent and will be detailed later on.

(1,ro,1,1,1,1,0,1,0,0,0,0,17,[10,-25,2],1)
N J
sense %D 1 impact index
object's ID position, status

Fig. 4. Information exchange between the perception and the behavioral systems

2.3 Knowledge Acquisition

Once new information is acquired and then processed by the analyzer, it is sent
to the knowledge motor, whose main components are displayed in Fig. Bl Firstly,
the current information is temporarily stored into the knowledge buffer, until
new information is attained. At that time, previous information is sent to the
knowledge updater, the new one being stored into this buffer and so on.

The knowledge base is actually a based-on-rules expert system, containing
facts and inference rules. In addition to the information provided by the updater,
the facts include complex relationships among the different elements (personal
relationships among agents such as friendship, relative positions of objects, etc).
The inference rules, based on deductive schemes such as modus ponens, modus
tollens, rule chaining, goal-oriented rule chaining and others(see, for instance,
Chapter 2 of [1]), provide the system with the tools to infer new knowledge from
the current one. Of course, the system’s complexity is mostly determined by the
number of rules and the design of the inference engine. Additional subsystems for
other tasks (coherence control, action execution) have also been incorporated.

The memory area is a neural network that will be applied to learn from data
(in our problem, the information received from the environment through the per-
ception subsystem). A neural network consists basically of one or several layers
of computing units, called neurons, connected by links. Each artificial neuron
receives an input value from the input layer or the neurons in the previous layer.

242 F. Luengo and A. Iglesias

KNOWLEDGE MOTOR

Knowledge Updater >_ Knowledge
l Buffer

Memory Area
Knowledge
Base

|
(Request Manager)T

Fig. 5. Scheme of the knowledge motor and its components

Then it computes a scalar output y = f (> w;pxk) from a linear combination
of the received inputs x1,xs,...,x, using a set of weights w;; associated with
each of the links and a given scalar function f (the activation function), which
is assumed to be the same for all neurons (see [5] and [6] for details).

Among the many interesting properties of a neural network, one of primary
importance is its ability to learn from the environment and to improve its perfor-
mance through learning. Such an improvement takes places over time through
an iterative process based on adjust the free parameters of the network (the
weights). In this paper we consider the unsupervised learning, in which the data
is presented to the network without any external information and the network
must discover by itself patterns, or categories. In particular, we use an autoasso-
ciative scheme, since the inputs themselves are used as targets. In other words,
the networks tries to learn the identity function, which is a problem far to be
trivial as the network contains less neurons than the input/output layers, and
hence, the network must perform dimensionality reduction. What the network
attempts is to subdivide the chromosome space into clusters in order to asso-
ciate each chromosome with a specific neuron, the nearest one in our case. To
this end, we try to minimize the sum of the squared within-groups residuals,
which are basically the distances of the chromosome locations to the respec-
tive group centroids. When a new chromosome is received as input, the whole
structure is recomputed and the group centroids are relocated accordingly. This
problem can be overcome by applying the K-means least-squares partitioning
algorithm, a procedure to divide a collection of n objects into K groups. The
basic algorithm consists of two main steps:

— compute cluster centroids and use them as new cluster seeds
— assign each chromosome to the nearest centroid.

Framework for Simulating the Human Behavior. Part 11 243

(#,ID R,Info R,Time,#)

|
object's chromosome
neuron ID

learning rate
last update's time
stored information

Fig. 6. Information received by the neurons

In our case, each neuron should receive the information shown in Fig. [6]
namely, the neuron ID, the object’s chromosome, the information to be stored by
the neuron, the time at which this information is attained (which will be used for
animation purposes), and the learning rate. This last parameter is introduced to
describe the neuron’s ability to adapt to a new information (and simultaneously,
to forget the previous one). Its meaning becomes clear by simply noticing that, in
our daily life, we can learn, understand and remember certain things completely,
partially and sometimes not at all. In fact, certain things can never be forgotten.
This “unforgettable” information is assigned to neurons whose learning rate is
set to 0 so that the information is permanently stored. By this way we can deal
with information which, although extremely important (i.e., with high impact
index), has been received only once.

2.4 Learning Process

Let us suppose that we have a neural network with k neurons and that n data
vectors x1,Ta,...,&,, (with k& < n) will eventually be perceived at different
times. To update the memory area, we employ a K-means procedure for compe-
titive networks, which are a popular type of unsupervised network architectures
widely used to automatically detect clusters, or categories, within the available
data. A simple competitive neural network is formed by an input and an output
layer, connected by feed forward connections. Each input pattern represents a
point in the configuration space (the space of inputs) where we want to obtain
classes.

This type of architecture is usually trained with a winner takes all algorithm,
so that only the weights associated with the output neuron with largest value
(the winner) are updated. The procedure is based on the following strategy: at
the initial stage, all the neurons are available to store new data. Therefore, the
first k£ data vectors are sequentially assigned to these neurons, i.e., data xz; is
learned by neuron i, 1 < ¢ < k. Simultaneously, time for neuron ¢ is initialized
to the moment at which data x; is learned. Once the next data xj1 is received,
it is assigned to the neuron j such that

d($j7$k+1) Sd(xi7xk+l)7 Vi:la"'7k7 Z#J (2)

When this condition is satisfied by several neurons simultaneously, the new data
is assigned to that storing the oldest information. Interesting enough is the way

244 F. Luengo and A. Iglesias

in which the neuron stores the new information: instead of replacing the old
data by the new one, what is actually stored is a combination of both data.
The basic idea behind this formulation is to overcome the limitation of having
more data than neurons by allowing each neuron to store more than one data
at the same time. Thus, the neuron does not exhibit a deterministic output but
a probabilistic one: what is actually computed is the probability of a neuron
to have a particular data at a particular time. This probability is continuously
updated in order to adapt our recalls to the most recent data. This leads to the
concept of reinforcement, based on the fact that the repetition of a particular
event over time increases the probability to recall it. Of course, some particular
data are associated with high-relevance events whose influence does not decrease
over time (or decreases so slowly that it can be considered as a time-independent
event). In those cases, the neuron must be able to store this data and maintain
its probability regardless the time. The learning rate parameter introduced in
Sect. 2:3]is intended to play this role.

Finally, we would like to remark that this scheme improves substantially the
deterministic approaches for short-medium-long (SML)-term memory by intro-
ducing uncertainty on the agent’s recalls. Combination of this scheme and fuzzy
logic constitutes a better approach to the human recall process and it is currently
being investigated. The conclusions of this study will be the subject of a future
publication.

References

1. Castillo, E., Gutiérrez, J.M., Hadi, A.: Expert Systems and Probabilistic Network
Models. Springer-Verlag, New York (1997)

2. Funge, J., Tu, X. Terzopoulos, D.: Cognitive modeling: knowledge, reasoning and
planning for intelligent characters, Proceedings of SIGGRAPH’99, ACM, New York
(1999) 29-38

3. Granieri, J.P., Becket, W., Reich, B.D., Crabtree, J., Badler, N.I.: Behavioral con-
trol for real-time simulated human agents, Symposium on Interactive 3D Graphics,
ACM, New York (1995) 173-180

4. Grzeszczuk, R., Terzopoulos, D., Hinton, G.: NeuroAnimator: fast neural network
emulation and control of physics-based models. Proceedings of SIGGRAPH’98,
ACM, New York (1998) 9-20

5. Haykin, S.: Neural Networks. A Comprehensive Foundation. Macmillan Publishing,
Englewood Cliffs, NJ (1994)

6. Hertz, J., Krogh, A., Palmer, R.G.: Introduction to the Theory of Neural Compu-
tation. Addison Wesley, Reading, MA (1991)

7. Monzani, J.S., Caicedo, A., Thalmann, D.: Integrating behavioral animation tech-
niques, Proceedings of EUROGRAPHICS’2001, Computer Graphics Forum, 20(3)
(2001) 309-318

8. Ridsdale, G.: Connectionist modeling of skill dynamics. Journal of Visualization
and Computer Animation, 1(2) (1990) 6672

9. Sims, K.: Evolving virtual creatures, Proceedings of SIGGRAPH’94, ACM, New
York (1994) 15-22

10. Van de Panne, M., Fiume, E.: Sensor-actuator networks, Proceedings of SIG-
GRAPH’93, Computer Graphics 27 (1993) 335-342

	Introduction
	General Scheme of the Behavioral System
	Objects Representation and Identification
	Information Acquisition
	Knowledge Acquisition
	Learning Process

