Abstract
The Cellular Neural Network Universal Machine (CNN-UM) is a novel neuroprocessor algorithmically programmable having real time and supercomputer power implemented in a single VLSI chip. The local CNN connectivity provides an useful computation paradigm when the problem can be reformulated as a well-defined task where the signal values are placed on a regular 2-D grid (i.e., image processing), and the direct interaction between signal values are limited within a local neighborhood. This paper introduces a Genetic Programming technique to evolve both the structure and parameters of visual algorithms on this architecture. This is accomplished by defining a set of node functions and terminals to implement the basic operations commonly used. Lastly, the procedures involved in the use of the algorithm are illustrated by several applications.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Roska, T., Zarandy, A., Zold, S., Foldesy, P., Szolgay, P.: The computational infrastructure of the analogic CNN computing - Part I: The CNN-UM Chip prototyping system. IEEE Trans. Circuits Syst. 46(1), 261–268 (1999)
Chua, L.O., Yang, L.: Cellular neural networks: Theory. IEEE Trans. Circuits Syst. 35(10), 1257–1272 (1988)
Werblin, F., Roska, T., Chua, L.O.: The analogic cellular neural network as a bionic eye. Int. J. circuit Theory Appl. 23(6), 541–549 (1995)
Liñán, G., Espejo, S., Domínguez-Castro, R., Rodríguez-Vázquez, A.: The CNNUC3: an Analog I/O 64 x 64 CNN Universal Machine with 7-bit Analog Accuracy. In: Proc. IEEE Int. Workshop on Cellular Neural Networks and their Applications (CNNA 2000), pp. 201–206 (2000)
Ebner, M.: On the evolution of interest operators using genetic programming. In: First European Workshop on Genetic Programming, pp. 6–10 (1998)
Poli, R.: Genetic Programming for Feature Detection and Image Segmentation. In: Fogarty, T.C. (ed.) AISB-WS 1996. LNCS, vol. 1143, pp. 110–125. Springer, Heidelberg (1996)
Preciado, V.M., Guinea, D., Vicente, J., Garcia-Alegre, M.C., Ribeiro, A.: Automatic CNN Multitemplate Tree Generation. In: Proc. IEEE Int. Workshop on Cellular Neural Networks and their Applications (CNNA 2000), pp. 327–332 (2000)
Koza, J.: Genetic Programming. MIT Press, Cambridge (1992)
Crounse, K.R., Chua, L.O.: Methods for image processing and pattern formation in cellular neural networks: A tutorial. IEEE Trans. Circuits Syst. 42(10), 583–601 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Preciado, V.M., Preciado, M.A., Jaramillo, M.A. (2004). Genetic Programming for Automatic Generation of Image Processing Algorithms on the CNN Neuroprocessing Architecture. In: Conejo, R., Urretavizcaya, M., Pérez-de-la-Cruz, JL. (eds) Current Topics in Artificial Intelligence. TTIA 2003. Lecture Notes in Computer Science(), vol 3040. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25945-9_37
Download citation
DOI: https://doi.org/10.1007/978-3-540-25945-9_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22218-7
Online ISBN: 978-3-540-25945-9
eBook Packages: Springer Book Archive