Abstract
Estimation of Distribution Algorithms (EDAs) are a kind of evolutionary algorithms where classical genetic operators are replaced by the estimation of a probabilistic model and its simulation in order to generate the next population. With this work we tackle, in a preliminary way, how to incorporate specific heuristic knowledge in the sampling phase. We propose two ways to do it and evaluate them experimentally through the classical knapsack problem.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baluja, S.: Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning. Technical Report CMU-CS-94-163, Computer Science Department, Carnegie Mellon University (1994)
Baluja, S.: Using a priori knowledge to create probabilistic models for optimization. International Journal of Approximate Reasoning 31, 193–220 (2002)
Baluja, S., Davies, S.: Combining multiple optimization runs with optimal dependecy trees. Technical Report CMU-CS-97-157, Computer Science Department, Carnegie Mellon University (1997)
Blanco, R., Sierra, B., Larrañaga, P., Inza, I.: Selection of highly accurate genes for cancer classification by estimation of distribution. In: Workshop of Bayesian Models in Medicine (held within AIME 2001), pp. 29–34 (2001)
Chow, C., Liu, C.: Approximating discrete probability distributions with dependence trees. IEEE Trans. on Information Theory 14, 462–467 (1968)
de Bonet, J.S., Isbell, C.L., Viola, P.: Mimic: Finding optima by estimating probability densities. Advances in Neural Information Processing Systems 9 (1997)
Dorigo, M., Gambardella, L.M.: Ant Colony System: a Cooperative Learning Approach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary Computation 1, 53–66 (1997)
Henrion, M.: Propagating uncertainty in Bayesian networks by probabilistic logic sampling. In: Lemmer, J.F., Kanal, L.N. (eds.) Uncertainty in Artificial Intelligence, vol. 2, pp. 149–163. North Holland, Amsterdam (1988)
Jensen, F.V.: Bayesian Networks and Decision Graphs. Springer, Heidelberg (2001)
Larrañaga, P., Etxeberria, R., Lozano, J.A., Peña, J.M.: Combinatorial optimization by learning and simulation of Bayesian. In: Uncertainty in Artificial Intelligence: Proceedings of the Sixteenth Conference (UAI 2000), pp. 343–352. Morgan Kaufmann Publishers, San Francisco (2000)
Larrañaga, P., Lozano, J.A. (eds.): Estimation of distribution algorithms. A new tool for evolutionary computation. Kluwer Academic Publishers, Dordrecht (2001)
Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Heidelberg (1996)
Moscato, P.: Memetic algorithms: A short introduction. New Ideas in Optimizacion, 219–234 (1999)
Mühlenbein, H.: The equation for response to selection and its use for prediction. Evolutionary Computation 5, 303–346 (1998)
Pisinger, D.: Core problems in knapsack algorithms. Operations Research 47, 570–575 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
de la Ossa, L., Gámez, J.A., Puerta, J.M. (2004). Heuristic Based Sampling in Estimation of Distribution Algorithms: An Initial Approach. In: Conejo, R., Urretavizcaya, M., Pérez-de-la-Cruz, JL. (eds) Current Topics in Artificial Intelligence. TTIA 2003. Lecture Notes in Computer Science(), vol 3040. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25945-9_38
Download citation
DOI: https://doi.org/10.1007/978-3-540-25945-9_38
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22218-7
Online ISBN: 978-3-540-25945-9
eBook Packages: Springer Book Archive