Skip to main content

Heuristic Based Sampling in Estimation of Distribution Algorithms: An Initial Approach

  • Conference paper
Current Topics in Artificial Intelligence (TTIA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3040))

Included in the following conference series:

Abstract

Estimation of Distribution Algorithms (EDAs) are a kind of evolutionary algorithms where classical genetic operators are replaced by the estimation of a probabilistic model and its simulation in order to generate the next population. With this work we tackle, in a preliminary way, how to incorporate specific heuristic knowledge in the sampling phase. We propose two ways to do it and evaluate them experimentally through the classical knapsack problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baluja, S.: Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning. Technical Report CMU-CS-94-163, Computer Science Department, Carnegie Mellon University (1994)

    Google Scholar 

  2. Baluja, S.: Using a priori knowledge to create probabilistic models for optimization. International Journal of Approximate Reasoning 31, 193–220 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baluja, S., Davies, S.: Combining multiple optimization runs with optimal dependecy trees. Technical Report CMU-CS-97-157, Computer Science Department, Carnegie Mellon University (1997)

    Google Scholar 

  4. Blanco, R., Sierra, B., Larrañaga, P., Inza, I.: Selection of highly accurate genes for cancer classification by estimation of distribution. In: Workshop of Bayesian Models in Medicine (held within AIME 2001), pp. 29–34 (2001)

    Google Scholar 

  5. Chow, C., Liu, C.: Approximating discrete probability distributions with dependence trees. IEEE Trans. on Information Theory 14, 462–467 (1968)

    Article  MATH  Google Scholar 

  6. de Bonet, J.S., Isbell, C.L., Viola, P.: Mimic: Finding optima by estimating probability densities. Advances in Neural Information Processing Systems 9 (1997)

    Google Scholar 

  7. Dorigo, M., Gambardella, L.M.: Ant Colony System: a Cooperative Learning Approach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary Computation 1, 53–66 (1997)

    Article  Google Scholar 

  8. Henrion, M.: Propagating uncertainty in Bayesian networks by probabilistic logic sampling. In: Lemmer, J.F., Kanal, L.N. (eds.) Uncertainty in Artificial Intelligence, vol. 2, pp. 149–163. North Holland, Amsterdam (1988)

    Google Scholar 

  9. Jensen, F.V.: Bayesian Networks and Decision Graphs. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  10. Larrañaga, P., Etxeberria, R., Lozano, J.A., Peña, J.M.: Combinatorial optimization by learning and simulation of Bayesian. In: Uncertainty in Artificial Intelligence: Proceedings of the Sixteenth Conference (UAI 2000), pp. 343–352. Morgan Kaufmann Publishers, San Francisco (2000)

    Google Scholar 

  11. Larrañaga, P., Lozano, J.A. (eds.): Estimation of distribution algorithms. A new tool for evolutionary computation. Kluwer Academic Publishers, Dordrecht (2001)

    Google Scholar 

  12. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  13. Moscato, P.: Memetic algorithms: A short introduction. New Ideas in Optimizacion, 219–234 (1999)

    Google Scholar 

  14. Mühlenbein, H.: The equation for response to selection and its use for prediction. Evolutionary Computation 5, 303–346 (1998)

    Article  Google Scholar 

  15. Pisinger, D.: Core problems in knapsack algorithms. Operations Research 47, 570–575 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de la Ossa, L., Gámez, J.A., Puerta, J.M. (2004). Heuristic Based Sampling in Estimation of Distribution Algorithms: An Initial Approach. In: Conejo, R., Urretavizcaya, M., Pérez-de-la-Cruz, JL. (eds) Current Topics in Artificial Intelligence. TTIA 2003. Lecture Notes in Computer Science(), vol 3040. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25945-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-25945-9_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22218-7

  • Online ISBN: 978-3-540-25945-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics