Abstract
The feature selection problem in the field of classification consists of obtaining a subset of variables to optimally realize the task without taking into account the remainder variables. This work presents how the search for this subset is performed using the Scatter Search metaheuristic and is compared with two traditional strategies in the literature: the Forward Sequential Selection (FSS) and the Backward Sequential Selection (BSS). Promising results were obtained. We use the lazy learning strategy together with the nearest neighbour methodology (NN) also known as Instance-Based Learning Algorithm 1 (IB1).
This work has been partially supported by the project TIC2002-04242-C03-01, 70% of which are FEDER founds.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aha, D.W., Kibler, D., Albert, M.K.: Instanced-based learning algorithms. Machine Learning 6(37–66) (1991)
Alpaydin, E.: Combined 5x2cv f-test for comparing supervised classification learning algorithms. IDIAP-RR 04, IDIAP (1998)
Anderson, J.R., Matessa, M.: Explorations of an incremental, bayesian algorithm for categorization. Machine Learning 9(275–308) (1992)
Bala, J., Dejong, K., Huang, J., Vafaie, H., Wechsler, H.: Using learning to facilitate the evolution of features for recognizing visual concepts. Evolutionary Computation 4(3), 297–311 (1996)
Dietterich, T.G.: Approximate statistical test for comparing supervised classification learning algorithms. Neural Computation 10(7), 1895–1923 (1998)
Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelligence 97(1-2), 273–324 (1997)
Kira, K., Rendell, L.: The feature selection problem: Traditional methods and a new algorithm. In: Tenth National Conference Conference on Artificial Intelligence (AAAI 1992), pp. 129–134. MIT, Cambridge (1992)
Laguna, M., Martí, R.: Scatter Search: Metodology and Implementations in C. Kluwer Academic Press, Dordrecht (2003)
Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1996)
Murphy, P.M., Aha, D.W.: Uci repository of machine learning. Technical report, University of California, Department of Information and Computer Science (1994)
Wilson, D.R., Matinez, T.R.: Improved heterogeneous distance functions. Journal of Artificial Intelligence Research 6, 1–34 (1997)
Resende, M.G.C., Ribeiro, C.C.: Greedy Randomized Adaptive Search Procedures. In: Glover, F., Kochenberger, G.G. (eds.) Handbook of Metaheuristics, Kluwer Academic Publishers, Dordrecht (2003)
García-López, F., Melián, B., Moreno-Pérez, B.J.A., Moreno-Vega, J.M.: Parallelization of the Scatter Search for the p-median problem. Parallel Computing 29, 575–589 (2003)
Campos, V., Glover, F., Laguna, M., Martí, R.: An Experimental Evaluation of a Scatter Search for the Linear Ordering Problem. Journal of Global Optimization 21, 397–414 (2001)
Hamiez, J.P., Hao, J.K.: Scatter Search for Graph Coloring Artificial Evolution, 168–179 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
García López, F.C., García Torres, M., Moreno Pérez, J.A., Moreno Vega, J.M. (2004). Scatter Search for the Feature Selection Problem. In: Conejo, R., Urretavizcaya, M., Pérez-de-la-Cruz, JL. (eds) Current Topics in Artificial Intelligence. TTIA 2003. Lecture Notes in Computer Science(), vol 3040. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25945-9_51
Download citation
DOI: https://doi.org/10.1007/978-3-540-25945-9_51
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22218-7
Online ISBN: 978-3-540-25945-9
eBook Packages: Springer Book Archive