Skip to main content

A Triangle-Based Logic for Affine-Invariant Querying of Two-Dimensional Spatial Data

  • Conference paper
Constraint Databases (CDB 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3074))

Included in the following conference series:

  • 211 Accesses

Abstract

In spatial databases, incompatibilities often arise due to different choices of origin or unit of measurement (e.g., centimeters versus inches). By representing and querying the data in an affine-invariant manner, we can avoid these incompatibilities.

In practice, spatial (resp., spatio-temporal) data is often represented as a finite union of triangles (resp., moving triangles). As two arbitrary triangles are equal up to a unique affinity of the plane, they seem perfect candidates as basic units for an affine-invariant query language.

We propose a so-called “triangle logic”, a query language that is affine-generic and has triangles as basic elements. We show that this language has the same expressive power as the affine-generic fragment of first-order logic over the reals on triangle databases. We illustrate that the proposed language is simple and intuitive. It can also serve as a first step towards a “moving-triangle logic” for spatio-temporal data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Benedikt, M., Libkin, L.: Safe constraint queries. SIAM Journal on Computing 29(5), 1652–1682 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Berg, M.D., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  3. Bochnak, J., Coste, M., Roy, M.: Géométrie Algébrique Réelle. Springer, Berlin (1987)

    MATH  Google Scholar 

  4. Chen, C.X., Zaniolo, C.: SQLST: A spatio-temporal data model and query language. In: Laender, A.H.F., Liddle, S.W., Storey, V.C. (eds.) ER 2000. LNCS, vol. 1920, pp. 96–111. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Chomicki, J., Haesevoets, S., Kuijpers, B., Revesz, P.: Classes of spatiotemporal objects and their closure properties. Annals of Mathematics and Artificial Intelligence (39), 431–461 (2003)

    Google Scholar 

  6. Egenhofer, M., Herring, J.: A mathematical framework for the definition of topological relationships. In: Brassel, K., Kishimoto, H. (eds.) Proceedings of the Fourth International Symposium on Spatial Data Handling, pp. 803–813 (1990)

    Google Scholar 

  7. Geerts, F., Haesevoets, S., Kuijpers, B.: A theory of spatio-temporal database queries. In: Ghelli, G., Grahne, G. (eds.) DBPL 2001. LNCS, vol. 2397, pp. 198–212. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Gyssens, M., Van den Bussche, J., Van Gucht, D.: Complete geometric query languages. Journal of Computer and System Sciences 58(3), 483–511 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Haesevoets, S., Kuijpers, B., Revesz, P.: Efficient indexing of image databases using novel affine-invariant color and shape features (2003) (manuscript)

    Google Scholar 

  10. Hagedoorn, M., Veldkamp, R.C.: Reliable and efficient pattern matching using an affine invariant metric. International Journal of Computer Vision 31, 203–225 (1999)

    Article  Google Scholar 

  11. Huttenlocher, D., Klauderman, G., Rucklidge, W.: Comparing images using the hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence 15, 850–863 (1998)

    Article  Google Scholar 

  12. Kuijpers, B.: Personal communication (2003)

    Google Scholar 

  13. Kuijpers, B., Paredaens, J., Van den Bussche, J.: On topological elementary equivalence of spatial databases. In: Afrati, F., Kolaitis, P. (eds.) ICDT 1997. LNCS, vol. 1186, pp. 432–446. Springer, Heidelberg (1997)

    Google Scholar 

  14. Kuijpers, B., Smits, M.: On expressing topological connectivity in spatial datalog. In: Gaede, V., Vianu, V., Brodsky, A., Srivastava, D., Günther, O., Wallace, M. (eds.) CP-WS 1996 and CDB 1997. LNCS, vol. 1191, pp. 116–133. Springer, Heidelberg (1997)

    Google Scholar 

  15. Lamdan, Y., Schwartz, J., Wolfson, H.: Affine-invariant model-based object recognition. IEEE Journal of Robotics and Automation 6, 578–589 (1990)

    Article  Google Scholar 

  16. Laurini, R., Thompson, D.: Fundamentals of Spatial Information Systems. APIC Series, vol. 37. Academic Press, London (1992)

    MATH  Google Scholar 

  17. Nielson, G.: A characterization of an affine invariant triangulation. In: Farin, G., Hagen, H., Noltemeier, H. (eds.) Geometric Modelling, Computing Supplementum 8, pp. 191–210 (1993)

    Google Scholar 

  18. Papadimitriou, C., Suciu, D., Vianu, V.: Topological queries in spatial databases. In: Proceedings of the 15th ACM Symposium on Principles of Database Systems, pp. 81–92. ACM Press, New York (1996)

    Google Scholar 

  19. Paredaens, J., den Bussche, J.V., Gucht, D.V.: Towards a theory of spatial database queries. In: Proceedings of the 13th ACM Symposium on Principles of Database Systems, pp. 279–288. ACM Press, New York (1994)

    Google Scholar 

  20. Paredaens, J., Kuper, G., Libkin, L. (eds.): Constraint databases. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  21. Revesz, P.: Introduction to Constraint Databases. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  22. Roberts, L.: Machine perception of three-dimensional solids. In: Tippet, J.T. (ed.) Optical and Electro-optical Information Processing (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haesevoets, S. (2004). A Triangle-Based Logic for Affine-Invariant Querying of Two-Dimensional Spatial Data. In: Kuijpers, B., Revesz, P. (eds) Constraint Databases. CDB 2004. Lecture Notes in Computer Science, vol 3074. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25954-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-25954-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22126-5

  • Online ISBN: 978-3-540-25954-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics