Abstract
In spatial databases, incompatibilities often arise due to different choices of origin or unit of measurement (e.g., centimeters versus inches). By representing and querying the data in an affine-invariant manner, we can avoid these incompatibilities.
In practice, spatial (resp., spatio-temporal) data is often represented as a finite union of triangles (resp., moving triangles). As two arbitrary triangles are equal up to a unique affinity of the plane, they seem perfect candidates as basic units for an affine-invariant query language.
We propose a so-called “triangle logic”, a query language that is affine-generic and has triangles as basic elements. We show that this language has the same expressive power as the affine-generic fragment of first-order logic over the reals on triangle databases. We illustrate that the proposed language is simple and intuitive. It can also serve as a first step towards a “moving-triangle logic” for spatio-temporal data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Benedikt, M., Libkin, L.: Safe constraint queries. SIAM Journal on Computing 29(5), 1652–1682 (2000)
Berg, M.D., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry. Springer, Heidelberg (2000)
Bochnak, J., Coste, M., Roy, M.: Géométrie Algébrique Réelle. Springer, Berlin (1987)
Chen, C.X., Zaniolo, C.: SQLST: A spatio-temporal data model and query language. In: Laender, A.H.F., Liddle, S.W., Storey, V.C. (eds.) ER 2000. LNCS, vol. 1920, pp. 96–111. Springer, Heidelberg (2000)
Chomicki, J., Haesevoets, S., Kuijpers, B., Revesz, P.: Classes of spatiotemporal objects and their closure properties. Annals of Mathematics and Artificial Intelligence (39), 431–461 (2003)
Egenhofer, M., Herring, J.: A mathematical framework for the definition of topological relationships. In: Brassel, K., Kishimoto, H. (eds.) Proceedings of the Fourth International Symposium on Spatial Data Handling, pp. 803–813 (1990)
Geerts, F., Haesevoets, S., Kuijpers, B.: A theory of spatio-temporal database queries. In: Ghelli, G., Grahne, G. (eds.) DBPL 2001. LNCS, vol. 2397, pp. 198–212. Springer, Heidelberg (2002)
Gyssens, M., Van den Bussche, J., Van Gucht, D.: Complete geometric query languages. Journal of Computer and System Sciences 58(3), 483–511 (1999)
Haesevoets, S., Kuijpers, B., Revesz, P.: Efficient indexing of image databases using novel affine-invariant color and shape features (2003) (manuscript)
Hagedoorn, M., Veldkamp, R.C.: Reliable and efficient pattern matching using an affine invariant metric. International Journal of Computer Vision 31, 203–225 (1999)
Huttenlocher, D., Klauderman, G., Rucklidge, W.: Comparing images using the hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence 15, 850–863 (1998)
Kuijpers, B.: Personal communication (2003)
Kuijpers, B., Paredaens, J., Van den Bussche, J.: On topological elementary equivalence of spatial databases. In: Afrati, F., Kolaitis, P. (eds.) ICDT 1997. LNCS, vol. 1186, pp. 432–446. Springer, Heidelberg (1997)
Kuijpers, B., Smits, M.: On expressing topological connectivity in spatial datalog. In: Gaede, V., Vianu, V., Brodsky, A., Srivastava, D., Günther, O., Wallace, M. (eds.) CP-WS 1996 and CDB 1997. LNCS, vol. 1191, pp. 116–133. Springer, Heidelberg (1997)
Lamdan, Y., Schwartz, J., Wolfson, H.: Affine-invariant model-based object recognition. IEEE Journal of Robotics and Automation 6, 578–589 (1990)
Laurini, R., Thompson, D.: Fundamentals of Spatial Information Systems. APIC Series, vol. 37. Academic Press, London (1992)
Nielson, G.: A characterization of an affine invariant triangulation. In: Farin, G., Hagen, H., Noltemeier, H. (eds.) Geometric Modelling, Computing Supplementum 8, pp. 191–210 (1993)
Papadimitriou, C., Suciu, D., Vianu, V.: Topological queries in spatial databases. In: Proceedings of the 15th ACM Symposium on Principles of Database Systems, pp. 81–92. ACM Press, New York (1996)
Paredaens, J., den Bussche, J.V., Gucht, D.V.: Towards a theory of spatial database queries. In: Proceedings of the 13th ACM Symposium on Principles of Database Systems, pp. 279–288. ACM Press, New York (1994)
Paredaens, J., Kuper, G., Libkin, L. (eds.): Constraint databases. Springer, Heidelberg (2000)
Revesz, P.: Introduction to Constraint Databases. Springer, Heidelberg (2002)
Roberts, L.: Machine perception of three-dimensional solids. In: Tippet, J.T. (ed.) Optical and Electro-optical Information Processing (1965)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Haesevoets, S. (2004). A Triangle-Based Logic for Affine-Invariant Querying of Two-Dimensional Spatial Data. In: Kuijpers, B., Revesz, P. (eds) Constraint Databases. CDB 2004. Lecture Notes in Computer Science, vol 3074. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25954-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-540-25954-1_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22126-5
Online ISBN: 978-3-540-25954-1
eBook Packages: Springer Book Archive