Skip to main content

The Path-Packing Structure of Graphs

  • Conference paper
Integer Programming and Combinatorial Optimization (IPCO 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3064))

  • 4309 Accesses

Abstract

We prove Edmonds-Gallai type structure theorems for Mader’s edge- and vertex-disjoint paths including also capacitated variants, and state a conjecture generalizing Mader’s minimax theorems on path packings and Cunningham and Geelen’s path-matching theorem.

Supported by European MCRTN Adonet, Contract Grant No. 504438.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cornuéjols, G., Hartvigsen, D., Pulleyblank, D.: Packing subgraphs in a graph. Oper. Res. Letter 1/4, 139–143 (1981/1982)

    Google Scholar 

  2. Cunningham, W.H.: Matching, matroids and extensions. Math. Program. Ser. B 91/3, 515–542 (2002)

    Article  MathSciNet  Google Scholar 

  3. Cunningham, W.H., Geelen, J.F.: The optimal path–matching problem. Combinatorica 17/3, 315–336 (1997)

    Article  MathSciNet  Google Scholar 

  4. Edmonds, J.R.: Maximum matching and a polyhedron with 0,1-vertices. J. Res. Nat. Bur. Standards Sect. B, 125–130 (1968)

    MathSciNet  Google Scholar 

  5. Edmonds, J.R., Johnson, E.L.: Matching: a well-solved class of integer linear programs. In: Guy, H., Sauer, S. (eds.) Combinatorial Structures and Their Applications, Calgary, Alberta (1969)

    Google Scholar 

  6. Frank, A., Szegõ, L.: A Note on the Path-Matching Formula. J. of Graph Theory 41/2, 110–119 (2002)

    Article  Google Scholar 

  7. Gallai, T.: Neuer Beweis eines Tutte’schen Satzes. Magyar Tud. Akad. Mat. Kutató Int. Közl. 8, 135–139 (1963)

    MATH  MathSciNet  Google Scholar 

  8. Gallai, T.: Maximale Systeme unabhänginger Kanten. Magyar Tud. Akad. Mat. Kutató Int. Közl. 9, 401–413 (1965)

    MathSciNet  Google Scholar 

  9. Lovász, L.: On the structure of factorizable graphs. Acta Math. Acad. Sci. Hungar. 23, 179–195 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lovász, L.: The factorization of graphs II. Acta Math. Acad. Sci. Hungar. 23, 223–246 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lovász, L., Plummer, M.D.: Matching Theory. Akadémiai Kiadó, Budapest (1986)

    MATH  Google Scholar 

  12. Mader, W.: Über die Maximalzahl kantendisjunkter A-Wege. Arch. Math (Basel) 30/3, 325–336 (1978)

    MathSciNet  Google Scholar 

  13. Mader, W.: Über die Maximalzahl kreuzungsfreier H-Wege. Archiv der Mathematik (Basel) 31, 387–402 (1978)

    MathSciNet  Google Scholar 

  14. Schrijver, A.: A short proof of Mader’s S-paths theorem. Journal of Combinatorial Theory Ser. B 82, 319–321 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Sebő, A.: Finding the T-join structure of graphs. Mathematical Programming 36, 123–134 (1986)

    Article  MathSciNet  Google Scholar 

  16. Sebő, A.: Factors of Graphs: Structures and Algorithms. Candidate’s thesis, Hungarian Academy of Sciences, Budapest (1987)

    Google Scholar 

  17. Sebő, A.: Undirected distances and the postman structure of graphs. Journal of Combinatorial Theory Ser. B 49, 10–39 (1990)

    Article  Google Scholar 

  18. Sebő, A., Szegő, L.: The path-packing structure of graphs. Egres Technical Report (2003), http://www.cs.elte.hu/egres/tr/egres-03-07.ps

  19. Spille, B., Szegő, L.: A Gallai-Edmonds-type Structure Theorem for Path- Matchings. J. of Graph Theory (2002) (to appear)

    Google Scholar 

  20. Szigeti, Z.: personal communication (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sebő, A., Szegő, L. (2004). The Path-Packing Structure of Graphs. In: Bienstock, D., Nemhauser, G. (eds) Integer Programming and Combinatorial Optimization. IPCO 2004. Lecture Notes in Computer Science, vol 3064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25960-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-25960-2_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22113-5

  • Online ISBN: 978-3-540-25960-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics