Abstract
This paper provides an overview of fuzzy systems from the viewpoint of similarity relations. Similarity relations turn out to be an appealing framework in which typical concepts and techniques applied in fuzzy systems and fuzzy control can be better understood and interpreted. They can also be used to describe the indistinguishability inherent in any fuzzy system that cannot be avoided.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dubois, D., Prade, H.: Similarity-Based Approximate Reasoning. In: Zurada, J.M., Marks II, R.J., Robinson, C.J. (eds.) Computational Intelligence Imitating Life, pp. 69–80. IEEE Press, New York (1994)
Höhle, U., Stout, L.N.: Foundations of Fuzzy Sets. Fuzzy Sets and Systems 40, 257–296 (1991)
Höppner, F., Klawonn, F., Kruse, R., Runkler, T.: Fuzzy Cluster Analysis. Wiley, Chichester (1999)
Klawonn, F.: Fuzzy Sets and Vague Environments. Fuzzy Sets and Systems 66, 207–221 (1994)
Klawonn, F.: Fuzzy Points, Fuzzy Relations and Fuzzy Functions. In: Novák, V., Perfilieva, I. (eds.) Discovering the World with Fuzzy Logic, pp. 431–453. Physica-Verlag, Heidelberg (2000)
Klawonn, F., Castro, J.L.: Similarity in Fuzzy Reasoning. Mathware and Soft Computing 2, 197–228 (1995)
Klawonn, F., Kruse, R.:Equality Relations as a Basis for Fuzzy Control. Fuzzy Sets and Systems 54 (1993), 147-156
Klawonn, F., Gebhardt, J., Kruse, R.: Fuzzy Control on the Basis of Equality Relations – with an Example from Idle Speed Control. IEEE Transactions on Fuzzy Systems 3, 336–350 (1995)
Klawonn, F., Novák, V.: The Relation between Inference and Interpolation in the Framework of Fuzzy Systems. Fuzzy Sets and Systems 81, 331–354 (1996)
Kruse, R., Gebhardt, J., Klawonn, F.: Foundations of Fuzzy Systems. Wiley, Chichester (1994)
Ruspini, E.H.: On the Semantics of Fuzzy Logic. Intern. Journ. of Approximate Reasoning 5, 45–88 (1991)
Thiele, H., Schmechel, N.: The Mutual Defineability of Fuzzy Equivalence Relations and Fuzzy Partitions. In: Proc. Intern. Joint Conference of the Fourth IEEE International Conference on Fuzzy Systems and the Second International Fuzzy Engineering Symposium, Yokohama, pp. 1383–1390 (1995)
Trillas, E., Valverde, L.: An Inquiry into Indistinguishability Operators. In: Skala, H.J., Termini, S., Trillas, E. (eds.) Aspects of Vagueness, pp. 231–256. Reidel, Dordrecht (1984)
Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–353 (1965)
Zadeh, L.A.: Similarity Relations and Fuzzy Orderings. Information Sciences 3, 177–200 (1971)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Klawonn, F., Kruse, R. (2004). The Inherent Indistinguishability in Fuzzy Systems. In: Lenski, W. (eds) Logic versus Approximation. Lecture Notes in Computer Science, vol 3075. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25967-1_2
Download citation
DOI: https://doi.org/10.1007/978-3-540-25967-1_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22562-1
Online ISBN: 978-3-540-25967-1
eBook Packages: Springer Book Archive