Abstract
In this paper we propose an open source/open architecture framework for developing organ level surgical simulations. Our goal is to facilitate shared development of reusable models, to accommodate heterogeneous models of computation, and to provide a framework for interfacing multiple heterogeneous models. The framework provides an intuitive API for interfacing dynamic models defined over spatial domains. It is specifically designed to be independent of the specifics of the modeling methods used and therefore facilitates seamless integration of heterogeneous models and processes. Furthermore, each model has separate geometries for visualization, simulation, and interfacing, allowing the modeler to choose the most natural geometric representation for each case. I/O interfaces for visualization and haptics for real-time interactive applications have also been provided.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anderson, E., Bai, Z., Bischof, C., Blackford, L.S., Demmel, J., Dongarra, J.J., Du Croz, J., Hammarling, S., Greenbaum, A., McKenney, A., Sorensen, D.: LAPACK Users’ guide, 3rd edn. SIAM, Philadelphia (1999)
Berne, R.M., Levy, M.N. (eds.): Principles of Physiology, 3rd edn. Mosby, Inc., St. Louis (2000)
Buck, J.T., Ha, S., Lee, E.A., Messerschmitt, D.G.: Ptolemy: A framework for simulating and prototyping heterogeneous systems. Int. Journal of Computer Simulation special issue on Simulation Software Development (1994)
Çavuşoğlu, M.C., Tendick, F.: Multirate simulation for high fidelity haptic interaction with deformable objects in virtual environments. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2000), April 2000, pp. 2458–2465 (2000)
Cotin, S., Shaffer, D.W., Meglan, D.A., Ottensmeyer, M.P., Berry, P.S., Dawson, S.L.: CAML: A general framework for the development of medical simulations. In: Proceedings of SPIE. Battlefield Biomedical Technologies II, vol. 4037 (2000)
Joukhadar, A., Laugier, C.: Dynamic simulation: Model, basic algorithms, and optimization. In: Laumond, J.-P., Overmars, M. (eds.) Algorithms For Robotic Motion and Manipulation, pp. 419–434. A.K. Peters Publisher, Wellesley (1997)
Mathworks, Inc. Simulink, http://www.mathworks.com/products/simulink/
Modelica — A Unified Object-Oriented Language for Physical Systems Modeling; Language Specifications 2.0. The Modelica Association (2002), http://www.modelica.org/
Montgomery, K., Bruyns, C., Brown, J., Sorkin, S., Mazzella, F., Thonier, G., Tellier, A., Lerman, B., Menon, A.C.: Spring: A general framework for collaborative, real-time surgical simulation. In: Westwood, J., et al. (eds.) Medicine Meets Virtual Reality (MMVR 2002), IOS Press, Amsterdam (2002)
Tendick, F., Downes, M., Goktekin, T., Çavuşoğlu, M.C., Feygin, D., Wu, X., Eyal, R., Hegarty, M., Way, L.W.: A virtual environment testbed for training laparoscopic surgical skills. Presence 9(3), 236–255 (2000)
Wu, X., Downes, M.S., Goktekin, T., Tendick, F.: Adaptive nonlinear finite elements for deformable body simulation using dynamic progressive meshes. In: Proceedings of the EUROGRAPHICS 2001 (September 2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Goktekin, T.G., Çavuşoğlu, M.C., Tendick, F., Sastry, S. (2004). GiPSi: An Open Source/Open Architecture Software Development Framework for Surgical Simulation. In: Cotin, S., Metaxas, D. (eds) Medical Simulation. ISMS 2004. Lecture Notes in Computer Science, vol 3078. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25968-8_27
Download citation
DOI: https://doi.org/10.1007/978-3-540-25968-8_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22186-9
Online ISBN: 978-3-540-25968-8
eBook Packages: Springer Book Archive