Skip to main content

A Nonlinear Finite Element Model of Soft Tissue Indentation

  • Conference paper
Medical Simulation (ISMS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3078))

Included in the following conference series:

Abstract

Mathematically describing the mechanical behavior of soft tissues under large deformations is of paramount interest to the medical simulation community. Most of the data available in the literature apply small strains (<10%) to the the tissue of interest to assume a linearly elastic behavior. This paper applies a nonlinear hyperelastic 8-chain network constitutive law to model soft tissues undergoing large indentations. The model requires 2 material parameters (initial modulus, locking stretch) to reflect the underlying physics of deformation over a wide range of stretches. A finite element model of soft tissue indentation was developed and validated employing this constitutive law. Ranges of the initial shear modulus and locking stretches were explored based on values found for breast tissue [17, 25]. Results of the model are shown with a lookup table containing third order polynomial coefficient fits. This work serves as an initial method to determine the unique material parameters of breast tissue from indentation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anand, L.: A Constitutive Model for Compressible Elastomeric Solids. Computational Mechanics 18, 339–355 (1996)

    Article  MATH  Google Scholar 

  2. Arruda, E.M., Boyce, M.C.: A Three-Dimensional Constitutive Model for The Large Stretch Behavior of Rubber Elastic Materials. J. Mech. Phys. Solids 41, 389–412 (1993)

    Article  Google Scholar 

  3. Azar, F.S., Metaxas, D.N., Schnall, M.D.: A Deformable Finite Element Model of the Breast for Predicting Mechanical Deformations under External Perturbations. Journal of Academic Radiology 8, 965–975 (2001)

    Article  Google Scholar 

  4. Boyce, M.C., Arruda, E.M.: Constitutive Models of Rubber Elasticity: A Review. Rubber Chemistry and Technology 73, 504–523 (2000)

    Article  Google Scholar 

  5. Carter, F.J., Frank, T.G., Davies, P.J., McLean, D., Cuschieri, A.: Measurements and Modeling of the Compliance of Human and Porcine Organs. Medical Image Analysis 5, 231–236 (2001)

    Article  Google Scholar 

  6. Cotin, S., Delingette, H., Ayache, N.: Real-Time Elastic Deformations of Soft Tissues for Surgery Simulation. IEEE Transactions on Visualization and Computer Graphics 5, 62–73 (1999)

    Article  Google Scholar 

  7. Delingette, H.: Towards Realistic Soft Tissue Modeling in Medical Simulation. IEEE: Special Issue in on Virtual and Augmented Reality in Medicine 86, 12 (1998)

    Google Scholar 

  8. Farshad, M., Barbezat, M., Flueler, P., Schmidlin, F., Graber, P., Niederer, P.: Material Characterization of the Pig Kidney in Relation with the Biomechanical Analysis of Renal Trauma. Journal of Biomechanics 32, 417–425 (1999)

    Article  Google Scholar 

  9. Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues, 2nd edn. Springer, New York (1993)

    Google Scholar 

  10. Han, L., Noble, J.A., Purcher, M.: A Novel Ultrasound Indentation System for Measuring Biomechanical Properties of in Vivo Soft Tissue. Ultrasound in Medicine & Biology 29, 813–823 (2003)

    Article  Google Scholar 

  11. Hayes, W.C., Keer, L.M., Hermann, G., Mockros, L.F.: A Mathematical Analysis for Inden- tation Tests of Articular Cartilage. J. Biomechanics 5, 541–551 (1972)

    Article  Google Scholar 

  12. Holzapfel, G.A.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. John Wiley & Sons Ltd., West Sussex (2000)

    MATH  Google Scholar 

  13. Hutter, R., Schmitt, K.-U., Niederer, P.: Mechanical Modeling of Soft Biological Tissues for Application in Virtual Reality Based Laparoscopy Simulators. Technology and Health Care 8, 15–24 (2000)

    Google Scholar 

  14. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  15. Kauer, M., Vuskovic, V., Dual, J., Székely, G., Bajka, M.: Inverse Finite Element Characteri- zation of Soft Tissues. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 128–136. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  16. Kim, J., Tay, B., Stylopoulos, N., Rattner, D.W., Srinivasan, M.A.: Characterization of Intra-Abdominal Tissues from in Vivo Animal Experiment for Surgical Simulation. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 206–213. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Krouskop, T.A., Wheeler, T.M., Kallel, F., Garra, B.S., Hall, T.: Elastic Moduli of Breast and Prostate Tissues under Compression. Ultrasonic Imaging 20, 260–274 (1998)

    Google Scholar 

  18. Miller, K.: Biomechanics of Soft Tissues. Med. Sci. Monit. 6, 158–167 (2000)

    Google Scholar 

  19. Ottensmeyer, M.P., Salisbury Jr., J.K.: In Vivo Data Acquisition Instrument for Solid Organ Mechanical Property Measurement. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 975–982. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  20. Plewes, D.B., Bishop, J., Samani, A., Sciarretta, J.: Visualization and Quantization of Breast Cancer Biomechanical Properties with Magnetic Resonance Elastography. Physics in Medicine and Biology 45, 1591–1610 (2000)

    Article  Google Scholar 

  21. Sarvazyan, A.P., Skovoroda, A.R., Pyt’ev, Y.P.: Mechanical Introscopy - a New Modality of Medical Imaging for Detection of Breast and Prostate Cancer. In: Eighth IEEE Symposium on Computer Based Medical Systems (1997)

    Google Scholar 

  22. Skovoroda, A.R., Klishko, A.N., Gusakyan, D.A., Mayevskii, Y.I., Yermilova, V.D., Oran-skaya, G.A., Sarvazyan, A.P.: Quantitative Analysis of the Mechanical Characteristics of Pathologically Changed Soft Biological Tissues. Biophysics 40, 1359–1364 (1995)

    Google Scholar 

  23. Szekely, G., Brechbuhler, C., Dual, J., et al.: Virtual Reality-Based Simulation of Endo-scopic Surgery. Presence 9, 310–333 (2000)

    Article  Google Scholar 

  24. Timoshenko, S., Goodier, J.N.: Theory of Elasticisy. McGraw-Hill, New York (1970)

    Google Scholar 

  25. Wellman, P.S.: Tactile Imaging. In: Division of Engineering and Applied Sciences, p. 137. Harvard University, Cambridge (1999)

    Google Scholar 

  26. Wu, X., Downes, M.S., Goktekin, T., Tendick, F.: Adaptive Nonlinear Finite Elements for Deformable Body Simulation Using Dynamic Progressive Meshes. In: Eurographics 2001, Computer Graphics Forum, vol. 20, pp. 349–358 (2001)

    Google Scholar 

  27. Yeh, W.-C., Li, P.-C., Jeng, Y.-M., Hsu, H.-C., Kuo, P.-L., Li, M.-L., Yang, P.-M., Lee, P.H.: Elastic Modulus Measurements of Human Liver and Correlation with Pathology. Ultrasound in Medicine & Biology 28, 467–474 (2002)

    Article  Google Scholar 

  28. Zhang, M., Zheng, Y.P., Mak, A.F.: Estimating the Effective Young’s Modulus of Soft Tissues from Indentation Tests - Nonlinear Finite Element Analysis of Effects of Friction and Large Deformation. Med. Eng. Phys. 19, 512–517 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, Y., Kerdok, A.E., Howe, R.D. (2004). A Nonlinear Finite Element Model of Soft Tissue Indentation. In: Cotin, S., Metaxas, D. (eds) Medical Simulation. ISMS 2004. Lecture Notes in Computer Science, vol 3078. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25968-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-25968-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22186-9

  • Online ISBN: 978-3-540-25968-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics