Skip to main content

Modelling Metabolic Pathways Using Stochastic Logic Programs-Based Ensemble Methods

  • Conference paper
Computational Methods in Systems Biology (CMSB 2004)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3082))

Included in the following conference series:

Abstract

In this paper we present a methodology to estimate rates of enzymatic reactions in metabolic pathways. Our methodology is based on applying stochastic logic learning in ensemble learning. Stochastic logic programs provide an efficient representation for metabolic pathways and ensemble methods give state-of-the-art performance and are useful for drawing biological inferences. We construct ensembles by manipulating the data and driving randomness into a learning algorithm. We applied failure adjusted maximization as a base learning algorithm. The proposed ensemble methods are applied to estimate the rate of reactions in metabolic pathways of Saccharomyces cerevisiae. The results show that our methodology is very useful and it is effective to apply SLPs-based ensembles for complex tasks such as modelling of metabolic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dugglery, R.G., Clarke, R.B.: Experimental design for estimating the parameters of the Michaelis-menten equation from progress curves of enzyme-catalysed reactions. Biochim. Biophys. Acta 1080, 231–236 (1991)

    Article  Google Scholar 

  2. Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)

    MATH  Google Scholar 

  3. Schapire, R.E.: A brief introduction to boosting. In: Proceedings of the Sixteenth International Conference on Artificial Intelligence, pp. 1401–1406 (1999)

    Google Scholar 

  4. Dietterich, T.G.: An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomisation. Machine Learning 40, 139–157 (2000)

    Article  Google Scholar 

  5. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithm: bagging, boosting and variants. Machine Learning 36, 105–142 (1999)

    Article  Google Scholar 

  6. Lodhi, H., Karakoulas, G., Shawe-Taylor, J.: Boosting strategy for classification. Intelligent Data Analysis 6, 149–174 (2002)

    MATH  Google Scholar 

  7. Schapire, R.E., Freund, Y., Barlett, P., Lee, W.S.: Boosting the margin: A new explanation for the effectiveness of voting methods. The Annals of Statistics 5, 1651–1686 (1998)

    MATH  Google Scholar 

  8. Lodhi, H., Karakoulas, G., Shawe-Taylor, J.: Boosting the margin distribution. In: Leung, K.-S., Chan, L., Meng, H. (eds.) IDEAL 2000. LNCS, vol. 1983, pp. 54–59. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Domingos, P.: A unified bias-variance decomposition for zero-one and squared loss. In: Seventeenth National Conference on Artificial Intelligence, pp. 564–569. AAAI Press, Menlo Park (2000)

    Google Scholar 

  10. Muggleton, S.H.: Stochastic logic programs. In: de Raedt, L. (ed.) Advances in Inductive Logic Programming, pp. 254–264. IOS Press, Amsterdam (1996)

    Google Scholar 

  11. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE 77, 257–286 (1989)

    Article  Google Scholar 

  12. Lari, K., Young, S.J.: The estimation of stochastic context-free grammars using the inside-outside algorithm. Computer Speech and Language 4, 35–56 (1990)

    Article  Google Scholar 

  13. Halpern, J.Y.: An analysis of first-order logics of probability. Artificial Intelligence 46, 311–350 (1990)

    Article  MATH  Google Scholar 

  14. Quinlan, J.R.: Boosting first-order learning. In: Arikawa, S., Sharma, A.K. (eds.) ALT 1996. LNCS (LNAI), vol. 1160, pp. 143–155. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  15. Dutra, I.C., Page, D., Shavilk, J.: An emperical evaluation of bagging in inductive logic programming. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS, vol. 2583. Springer, Heidelberg (2003)

    Google Scholar 

  16. Venter, J.C., Adams, M.D., Myers, E.W., et al.: The sequence of human genome. Science 291, 1304–1351 (2001)

    Article  Google Scholar 

  17. Consortium, I.H.G.S.: Initial sequencing and analysis of the huma genome. Nature 409, 860–921

    Google Scholar 

  18. Bryant, C.H., Muggleton, S.H., Oliver, S.G., Kell, D.B., Reiser, P., King, R.D.: Combining inductive logic programming, active learning and robotics to discover the function of genes. Electronic Transactions in Artificial Intelligence 6-B1, 1–36 (2001)

    Google Scholar 

  19. Gepasi, M.P.: A software package for modelling the dynamics, steady states and control of biochemical and other systems. Comput. Appl. Biosci. 9, 563–571 (1993)

    Google Scholar 

  20. Goryanin, I., Hodgman, T.C., Selkov, E.: Mathematical simulation and analysis of cellular metabolism and regulation. Bioinformatics 15, 749–758 (1999)

    Article  Google Scholar 

  21. Gibson, M.A.: Computational methods for stochastic biological systems. PhD thesis, California Institute of Technology (2000)

    Google Scholar 

  22. Muggleton, S.H.: Learning from positive data. Machine Learning (2001)

    Google Scholar 

  23. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. J. Royal statistical Society Series B 39, 1–38 (1977)

    MATH  Google Scholar 

  24. Cussens, J.: Parameter estimation in stochastic logic programs. Machine Learning 44, 245–271 (2001)

    Article  MATH  Google Scholar 

  25. Efron, B., Tibshirani, R.: An introduction to bootstrap. Chapman and Hall, Boca Raton (1993)

    Book  MATH  Google Scholar 

  26. Angelopoulos, N., Muggleton, S.: Machine learning metabolic pathway descriptions using a probabilistic relational representation. Electronic Transactions in Artificial Intelligence 6 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lodhi, H., Muggleton, S. (2005). Modelling Metabolic Pathways Using Stochastic Logic Programs-Based Ensemble Methods. In: Danos, V., Schachter, V. (eds) Computational Methods in Systems Biology. CMSB 2004. Lecture Notes in Computer Science(), vol 3082. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25974-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-25974-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25375-4

  • Online ISBN: 978-3-540-25974-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics