
CoDoc: Multi-mode Collaboration
over Documents

Claudia-Lavinia Ignat and Moira C. Norrie

Institute for Information Systems, ETH Zurich
CH-8092 Zurich, Switzerland
{ignat,norrie}@inf.ethz.ch

Abstract. In software engineering as well as in any engineering do-
main, a way of customizing the collaborative work to various modes of
collaboration, i.e. synchronous and asynchronous, and the possibility of
alternating these modes along the phases of a project is required. Our
goal is to develop a universal information platform that can support
collaboration in a range of application domains, the basic sharing unit
being the document. Since not all user groups have the same conventions
and not all tasks have the same requirements, this implies that it should
be possible to customize the collaborative environment at the level of
both communities and individual tasks. In this paper we present the
consistency maintenance models underlying the synchronous and asyn-
chronous modes of collaboration. We highlight the importance of choos-
ing a general structured model of the document and particularly analyze
the multi-mode collaboration for two main representative types of doc-
uments: textual and graphical.

1 Introduction

Within the CSCW field, collaborative editing systems have been developed to
support a group of people editing documents collaboratively over a computer
network. The collaboration between users can be synchronous or asynchronous.

Synchronous collaboration means that members of the group work at the
same time on the same documents and modifications are seen in real-time by
the other members of the group. We have developed a real-time collaborative
text editor [7] and a real-time collaborative graphical editor [8].

Asynchronous collaboration means that members of the group modify the
copies of the documents in isolation, working in parallel and afterwards synchro-
nizing their copies to reestablish a common view of the data. Version control sys-
tems are asynchronous systems used in group environments and merging plays
a key role for achieving convergence in such systems.

In software engineering as well as in any engineering domain, the reduction
of the product life cycle, i.e. fewer months between releases, together with the
increase in the product complexity and the size of the team, requires a means
of customizing the collaborative work to various modes of collaboration, i.e.
synchronous and asynchronous, and the possibility of alternating these modes
along the phases of a project.

A. Persson and J. Stirna (Eds.): CAiSE 2004, LNCS 3084, pp. 580–594, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

CoDoc: Multi-mode Collaboration over Documents 581

Our goal is to develop a universal information platform that can support
collaboration in a range of application domains such as engineering design (CAD
or CAAD) and collaborative writing (news agency, authoring of scientific papers
or scientific annotations), the basic unit for collaboration being the document.
Since not all user groups have the same conventions and not all tasks have
the same requirements, this implies that it should be possible to customize the
collaborative editor at the level of both communities and individual tasks.

In this paper we present the synchronous and asynchronous modes of collab-
oration for two main classes of documents, namely, textual and graphical. We
describe how the real-time collaborative systems that we have developed can be
extended to support also asynchronous functionality. In this way we can cus-
tomize the collaborative editor and be able to support collaboration in a range
of application domains. Choosing a general structured model offers a set of en-
hanced features such as increased efficiency and improvements in the semantics
for both modes of collaboration. Moreover, the general model of the document
allows a general consistency model to be found for multi-mode collaboration.
An integrated system supporting both synchronous and asynchronous collabo-
ration is needed in practice because these two modes of communication can be
alternatively used in developing a project at different stages and under different
circumstances.

The real-time feature is needed when the users in the team want to frequently
interact to achieve a common goal. For example, before a paper deadline when
there is time pressure for the authors of the paper, the real-time feature is very
helpful. Suppose the two authors of the paper agreed that one of them, the one
that is a native english speaker, will go through the whole paper and check the
english, while the second author is adding some new sections. The first author can
go through the whole document and correct the english and then go on to revise
the content and correct the english of the sections written in the meanwhile by
the second author and distinguished by a different colour. Another application of
real-time collaboration is in the case of editing computerized cooperative music
notation both in orchestras and music schools, where the musicians may perform
changes simultaneously on the same music score [1]. The cooperative distributed
editor of music may be seen as a particular case of a collaborative graphical
editor.

The non-real-time feature is required if the users do not want to coordinate
interactively with each other. An application of this mode of collaboration is
when users prefer working in their private workspaces, performing modifications
and only afterwards publishing their work to the other members of the group.
For example, co-authors of a book that collaboratively write different chapters
will merge their work only after finishing a first draft. Another relevant exam-
ple that requires the need of asynchronous communication is the following one:
two users concurrently modelling a huge XML database have a basic DTD and
want to work on enhancing the DTD, each one on some specific parts. In the
meantime they fill in data into the XML document conforming to the DTD and
use XSLT to produce transformations on the XML. In this example, uncoupled

582 Claudia-Lavinia Ignat and Moira C. Norrie

editing is desired: During their individual work, the two programmers need to
repeatedly edit the DTD, fill in data into the XML and test the transformations,
this fact requiring that the DTD is kept in separately consistent states. Also,
the asynchronous mode of communication is useful in the case that a real-time
collaboration cannot be performed for some period of time due to some tempo-
rary failures but can operate again afterwards. For instance, consider the case of
a teleconference where the users share a common whiteboard that is interrupted
by a communication failure. It should be possible that the members work in
isolation on their local copies of the whiteboard during the failure, but be able
to merge their work when the communications are restored.

The paper is structured as follows. In the first section we describe the main
features of the real-time editing systems that we have developed by highlighting
the principles we have used for maintaining consistency in the case of both text
and graphical documents. In section 3 we go on to describe the asynchronous
mode of collaboration, first giving an overview of the copy/modify/merge tech-
nique used in the asynchronous communication and then showing in detail how
this paradigm can be implemented by applying the same basic principles as for
real-time collaboration. In section 4 we compare our approach with some related
work. Concluding remarks are presented in the last section.

2 Real-Time Collaborative Editing Systems

In this section we are going to briefly describe the algorithms for maintaining
consistency that underly the functionality of the collaborative text and graphical
editors which form the basis of our multi-mode collaborative system CoDoc.

A replicated architecture where users work on local copies of the shared
documents and instructions are exchanged by message passing has been used in
both cases of the text and graphical collaborative editors. Also, both systems are
characterized by high concurrency, meaning that any number of users are able
to concurrently edit any part of the shared document, as opposed to turn-taking
and locking protocols.

We have chosen a hierarchical representation both for text and graphical
documents. We model the text document as consisting of paragraphs, each para-
graph consisting of sentences, each sentence consisting of words and each word
consisting of letters. We also use a tree model for representing the scene of ob-
jects in the graphical document. Groups are represented as internal nodes, while
simple objects are represented as leaves. A group can contain other groups or
simple objects.

In the next subsections we describe in turn the techniques underlying the
functionality of the collaborative text and graphical editors.

2.1 Real-Time Collaborative Text Editor

The operational transformation approach has been identified as an appropri-
ate approach for maintaining consistency of the copies of shared documents in

CoDoc: Multi-mode Collaboration over Documents 583

O1
Insert(“all”, 3)

=>“We attended all the receptions.”

“We attended the receptions.”

Insert(“conference”, 4)

=> “We attended all conference
the receptions.”

Insert(“all”, 3)
=> “We attended all the conference

receptions.”

=> “We attended all the
conference receptions.”

IT(Insert(“conference”, 4),
Insert(“all“, 3))

= Insert(“conference”, 5)

IT(Insert(“all”, 3),
Insert(“conference“, 4))

= Insert(“all”, 3)

=> “We attended all the
conference receptions.”

“We attended the receptions.” “We attended the receptions.”

Site1 Site2

O2
Insert(“conference”, 4)
=> “We attended the conference receptions.”

Fig. 1. Operation transformation example

real-time collaborative editing systems. It allows local operations to be executed
immediately after their generation and remote operations need to be transformed
against the other operations. The transformations are performed in such a man-
ner that the intentions of the users are preserved and, at the end, the copies
of the documents converge. Various operational transformation algorithms have
been proposed: dOPT [5], adOPTed [14], GOT/GOTO [16], SOCT2, SOCT3
and SOCT4 [19].

Figure 1 illustrates a very simple example of the operation transformation
mechanism. Suppose the shared document contains a single sentence “We at-
tended the receptions.” Two users, at Site1 and Site2, respectively, concurrently
perform some operations on their local replicas of the document. User1 performs
operation O1 of inserting the word “all” as the 3rd word into the sentence, in
order to obtain “We attended all the receptions.” Concurrently, User2 performs
operation O2 of inserting the word “conference” as the 4th word into the sen-
tence, in order to obtain “We attended the conference receptions.” Let us analyse
what happens at each site when the operation from the other site arrives. At
Site1, when operation O2 arrives, if executed in its original form, the result
would be “We attended all conference the receptions.” which is not what the
users intended. At Site2, when operation O1 arrives, if executed in its original
form, the result, fortunately, would be a merge of the intentions of the two users,
i.e. “We attended all the conference receptions.” But, generally, executing the
operations in their generation form at remote sites, will not ensure that the
copies of the documents at Site1 and Site2 will converge. So, we see the need of
transforming the operations when they arrive at a remote site.

The simplest form of operation transformation is the Inclusion Transforma-
tion - IT (Oa, Ob), which transforms operation Oa against a concurrent operation
Ob such that the impact of Ob is included in Oa.

584 Claudia-Lavinia Ignat and Moira C. Norrie

In the previous example, at Site1, when operation O2 arrives, it needs to be
transformed against operation O1 to include the effect of this operation. Because
the concurrent operation O1 inserted a word before the word to be inserted by
operation O2, operation O2 needs to adapt the position of insertion, i.e. increase
its position by 1. In this way the transformed operation O2 will become an
insert operation of the word “conference” into position 5, the result being “We
attended all the conference receptions.”, satisfying the intentions of both users.
At Site2, in the same way, operation O1 needs to be transformed against O2 in
order to include the effect of O2. The position of insertion of O1 does not need
to be modified in this case because operation O2 inserted a word to the right of
the insertion position of O1. Therefore, the transformed operation O1 has the
same form as the original operation O1. We see that the result obtained at Site2
respects the intentions of the two users and, moreover, the two replicas at the
two sites converge.

Another form of operation transformation called Exclusion Transformation
ET (Oa, Ob) transforms Oa against an operation Ob that precedes Oa in causal
order such that the impact of Ob is excluded from Oa.

Most real-time collaborative editors relying on existing operational transfor-
mation algorithms for consistency maintenance use a linear representation for
the document, such as a sequence of characters in the case of text documents.
All existing operational transformation algorithms keep a single history of oper-
ations already executed in order to compute the proper execution form of new
operations. When a new remote operation is received, the whole history needs
to be scanned and transformations need to be performed, even though different
users might work on completely different sections of the document and do not
interfere with each other. Keeping the history of all operations in a single buffer
decreases the efficiency.

In [7] we proposed a consistency maintenance algorithm called treeOPT re-
lying on a tree representation of documents. The hierarchical representation of
a document is a generalisation of the linear representation and, in this way, our
algorithm can be seen as extending the existing operational transformation al-
gorithms. An important advantage of the algorithm is related to its improved
efficiency. In our representation of the document, the history of operations is
not kept in a single buffer, but rather distributed throughout the whole tree,
and, when a new operation is transformed, only the history distributed on a
single path of the tree will be spanned. Moreover, when working on medium
or large documents, operations will be localized in the areas currently being
modified by each individual user and these may often be non-overlapping. In
these cases, almost no transformations are needed, and therefore the response
times and notification times are very good. Another important advantage is the
possibility of performing, not only operations on characters, but also on other se-
mantic units (words, sentences and paragraphs). The transformation functions
used in the operational transformation mechanism are kept simple as in the
case of character-wise transformations, not having the complexity of string-wise
transformations. An insertion or a deletion of a whole paragraph can be done in

CoDoc: Multi-mode Collaboration over Documents 585

a single operation. Therefore, the efficiency is further increased, because there
are fewer operations to be transformed, and fewer to be transformed against.
Moreover, the data is sent using larger chunks, thus the network communication
is more efficient. Our approach also adds flexibility in using the editor, the users
being able to select the level of granularity at which they prefer to work.

The algorithm applies the same basic mechanisms as existing operational
transformation algorithms recursively over the different document levels (para-
graph, sentence, word and character) and it can use any of the operational
transformation algorithms relying on linear representation such as dOPT [5],
adOPTed [14], GOT/GOTO [16], SOCT2, SOCT3 and SOCT4 [19] (see [6]).

2.2 Real-Time Collaborative Graphical Editor

In the object-based collaborative graphical editor developed in our group, the
shared objects subject to concurrent accesses are the graphic primitives such as
lines, rectangles, circles and text boxes. The operations operating on these prim-
itives are create/delete, changeColor/changeBckColor, changePosition, change-
Size, bringToFront/sendToBack, changeText and group/ungroup.

In the case of conflicting operations, we have identified two types of conflict
between the operations: real conflict and resolvable conflict.

Real conflicting operations are those conflicting operations for which a com-
bined effect of their intentions cannot be established. A serialization order of
execution of these operations cannot be obtained: executing one operation will
prevent or completely mask the execution of the other operation. An example
of real conflicting operations are two concurrent operations both targeting the
same object and changing the colour of that object to different values.

The collaborative graphical editing system we have implemented is a cus-
tomizable editor allowing groups of users to choose a policy for dealing with
concurrency. Our system offers three policy modes in the case that a set of con-
current operations are conflicting: the null-effect based policy where none of the
operations in conflict are executed, the priority based policy when only the op-
eration issued by the user with the highest priority wins the conflict and the
multi-versioning policy when the effects of all operations are maintained. The
last of these has still to be implemented.

In the case of the null-effect based policy for dealing with conflicts, none of
the concurrent real conflicting operations will be executed. In the case of the
priority based policy, given a set of concurrent real conflicting operations, only
the operation with the highest priority will be executed, the other operations
being cancelled.

Resolvable conflicting operations are those conflicting operations for which
a combined effect of their intentions can be obtained by serializing those oper-
ations. Consequently, ordering relations can be defined between any two con-
current operations. Any two resolvable conflicting operations can be defined as
being in right order or in reverse order.

Although the model used for representing the text and, respectively, the
graphical document is hierarchical and the same consistency model (causality

586 Claudia-Lavinia Ignat and Moira C. Norrie

preservation, convergence and intention preservation) has been applied to both
text and graphical domains, the techniques used for achieving consistency are
different. For maintaining consistency in the case of the object-based graphical
documents, a serialization mechanism has been applied rather than the operation
transformation principle as in the case of the text editor. In what follows we will
give an explanation of this difference. As we have seen, the text document has
been modelled as a set of paragraphs, each paragraph as a set of sentences
and so on. Each semantic unit (paragraph, sentence, word, character) can be
uniquely identified by its position in the sequence of the children elements of
its parent. In order to achieve consistency, the insertion and deletion operations
on these elements may shift the positions of the elements in the sequence of
the children elements of their parent for adapting to the effect of concurrent
operations. In the case of graphical documents, the objects are not organized
into sequences and identified by their position in the sequence. Rather, they
are identified by unique identifiers which are immutable. So, there is no need
to adapt the identifiers due to the concurrent operations. Graphical objects in
the case of graphical documents have associated attributes which are subject to
concurrent operations. The elements in the tree model of the text document have
no associated attributes. In the case that we want to associate different fonts
and styles to elements of the text document, we could represent those elements
using object identifiers and attach attributes such as font size to the elements.

3 Asynchronous Collaborative Editing Systems

In this section, we first describe briefly the copy/modify/merge paradigm sup-
ported by configuration management tools. Afterwards, we investigate how each
of the steps of this paradigm can be implemented using the same basic mecha-
nisms as for real-time collaboration.

3.1 Copy/Modify/Merge Techniques

All configuration management tools support the Copy/Modify/Merge technique.
This technique consists basically of three operations applied on a shared repos-
itory storing multiversioned objects: checkout, commit and update.

A checkout operation creates a local working copy of an object from the
repository.

A commit operation creates in the repository a new version of the corre-
sponding object by validating the modifications done on the local copy of the
object. The condition of performing this operation is that the repository does
not contain a more recent version of the object to be committed than the local
copy of the object.

An update operation performs the merging of the local copy of the object
with the last version of that object stored in the repository.

In Fig. 2 a scenario is illustrated in order to show the functionality of the
Copy/Modify/Merge paradigm. User1 and User2 checkout the document from
the repository and create local copies in their private workspaces (operations 1

CoDoc: Multi-mode Collaboration over Documents 587

and 2, respectively). User1 modifies the document (operation 3) and afterwards
commits the changes (operation 4). User2 modifies in parallel with User1 the
local copy of the document (operation 5). Afterwards, User2 attempts to commit
his changes (operation 6). But, at this stage, User2 is not up-to-date and there-
fore cannot commit his changes on the document. User2 needs to synchronize his
version with the last version, so he downloads the last version of the document
from the repository (operation 7). A merge algorithm will be performed in order
to merge the changes performed in parallel by User1 and User2 (operation 8).
Afterwards, User2 can commit his changes to the repository (operation 9).

Repository

(1) checkout (2) checkout

(3) modify

(4) commit

(5) modify

(6) commit

not
commited

(8) merge

(9) commit

Private
Workspace
User 1

Private
Workspace
User 2

(7) update

Fig. 2. Copy/Modify/Merge paradigm

Two different ways of performing the merging operations have been devised:
state-based merging and operation-based merging.

State-based merging [2, 17] uses only information about the states of the doc-
uments and no information about the evolution of one state into another. In the
merging process the two states of the document are compared and a delta is
generated (the most well-known algorithm used is diff3 [11]). Afterwards, this
delta is applied on one of the states of the document to generate the document
state representing the result of merging.

Operation-based merging [10, 15] keeps the information about the evolution
of one state of the document into another in a buffer containing the operations
performed between the two states of the document. The merging is done by
executing the operations performed on a copy of the document onto the other
copy of the document to be merged.

In what follows we analyze the problems that arise at the committing stage
when a user commits a copy from the private workspace into the repository and
at the updating stage when the copy from the private workspace is updated by
a version from the repository.

3.2 Committing Stage

In the case that a user wants to commit the working copy into the repository,
he sends a request to the repository server. In the case that the process of an-

588 Claudia-Lavinia Ignat and Moira C. Norrie

other concurrent committing request is under current development, the request
is queued in a waiting list. Otherwise, in the case that the base version (the last
updated version from the repository) in the private workspace is not the same
as the last version in the repository, the repository sends to the site a negative
answer that the site needs to update its working copy before committing. In
the case that the base version from the working space is the same as the last
version in the repository, the site will receive a positive answer. Afterwards, the
site sends to the repository the log of operations representing the delta between
the last version in the repository and the current copy from the workspace and
increases the base version number. Upon receiving the list of operations, the
repository executes sequentially the operations from the log and updates the
number of the latest version.

3.3 Updating Stage

Merging at the updating stage is more difficult to achieve than the merging at
the committing stage. Updates made on a committed working copy by another
user cannot be simply reapplied in the private working space, because they were
generated in another context. In the updating stage, a set of conflicts among
operations occurs.

Our aim is to find a unifying approach for collaborative text and graphical
editors working in both synchronous and asynchronous modes.

In the case of the real-time collaborative text editor application, the seman-
tics are somehow already incorporated in the way of resolving the conflicts.
Always there is a way of combining the individual intentions of the users to ob-
tain a group intention (although this does not completely satisfy the individual
intentions). For example, consider a shared document consisting of the sentence:
“He has discovered that we do not like his company.” Suppose two users concur-
rently edit the copies of this document, the first one inserting the word “finally”
in order to obtain “He has finally discovered that we do not like his company.”
and the second one deleting “He has discovered that” in order to obtain “we
do not like his company.” After performing both operations the result will be
“finally we do not like his company.” which is not what either of the users ex-
pected. However, the use of different colours provides awareness of concurrent
changes made by other users and the users can further edit the result.

As we have already seen, in the case of the real conflicting operations for the
graphical editor, the individual intentions of the users cannot be respected. For
instance, consider the case of two users concurrently moving the same object to
different positions. The only way of respecting the intentions of the two users is
by creating versions of the object, which might not be the preferred solution. As
alternative solutions, the collaborative graphical editor offers a null-effect based
policy, i.e. none of the two operations will be executed, or the priority based
policy where the operation of the user that has the highest priority is executed.

Our solution for dealing with conflicts in a flexible way is to allow the possi-
bility to specify, both for the text and graphical editor, a set of rules that define
the conflicts as well as a function showing if there is a conflict between any two

CoDoc: Multi-mode Collaboration over Documents 589

operations in a certain context. The conflicts can therefore be defined specif-
ically for any application domain. In this way, we make a distinction between
the syntactic and semantic consistency. Syntactic consistency means to reconcile
the divergent copies by using either operational transformation or a serialization
mechanism. It ensures that all sites have the same view, even if that view has no
meaning in the context of the application. On the other hand, semantic consis-
tency is defined specifically for an application, in our approach being modelled
by the set of rules that specify the conflicts. For resolving the conflicts, either
an automatic solution can be provided or human intervention can be required.
Different merge policies in the context of various collaborative activities have
been analysed in [13].

In Fig. 3, we have sketched the updating stage of the merging. In the reposi-
tory, the difference between version Vn+1 and version Vn is represented by the se-
quence of operations DL = [Od1, Od2, ..., Odm]. In the private workspace of a site,
after the checkout of version Vn from the repository, the local copy of the docu-
ment W0 has been updated by the sequence of operations LL = [Ol1, Ol2, ..., Olk]
to the local copy Wk. Afterwards, the local copy Wk needs to be updated with
the version Vn+1 from the repository. So, a merge between the sequence of op-
erations from list DL and the operations from LL will be performed in order
to obtain the local copy Wk+1. Afterwards a commit can be performed to the
repository. But, in order to perform a commit, the difference between the local
copy in the private workspace (Wk+1) and the last updated version from the
repository (Vn+1) should be computed.

Repository

checkout

merge

Private
Workspace

V0 Vn

W0

Od1, Od2, ..., Odm Vn+1

Wk

Ol1, Ol2, ..., Olk
Vn+1 Wk+1

...

update

Fig. 3. The updating stage of the Copy/Modify/Merge paradigm

From the list DL of operations, not all of them will be re-executed in the pri-
vate workspace because some of these operations may be semantically in conflict
with some of the operations in the list LL.

A nonconflicting operation needs to be integrated into the log LL of opera-
tions in the same way a remote operation is integrated into the history buffer of
a site in the case of the real-time mode of communication, as described in [7].

590 Claudia-Lavinia Ignat and Moira C. Norrie

In the case that some conflicting operations precede a nonconflicting oper-
ation O, O needs to be transformed before its integration into LL. The trans-
formation consists of excluding from O the effect of the conflicting operations
(by applying the exclusion transformation) because the context of definition of
O changed. The new form of O can then be integrated into the list LL.

In order to compute the difference between the local copy in the private
workspace (Wk+1) and the last updated version from the repository (Vn+1), the
operations in LL need to be transformed according to the sequence of operations
from DL that have been re-executed in the private workspace. Moreover, the fact
that some operations from DL have been in conflict with some of the operations
in LL and could not be executed in the private workspace needs to be included
into the delta as their inverse in order to cancel the effect of those operations. For
instance, the inverse of the operation of inserting the word “love” in paragraph
2, sentence 3, as the 4th word, InsertWord(2,3,4, “love”), is DeleteWord(2,3,4,
“love”).

Let us give an example to illustrate the asynchronous communication. Sup-
pose the repository contains as version V0 the document consisting of only one
paragraph with one sentence: “He enjoy going to cinemas.” Suppose two op-
erations concurrently inserting the same character in the same position in the
document are conflicting. Further, suppose two users check out version V0 from
the repository into their private workspaces and have as first version in their
private workspace W10 = V0 and W20 = V0 respectively. The first user per-
forms operations O11 and O12, where O11=InsertSentence(“He loves movies.”,
1,1) and O12=InsertCharacter(“s”, 1,2,2,6). Operation O11 inserts the sentence
“He loves movies.” in the first paragraph as the first sentence, in order to ob-
tain the version W11=“He loves movies. He enjoy going to cinemas.” Operation
O12 inserts the character “s” in paragraph 1, sentence 2, word 2, as the last
character (position 6) in order to obtain the version W12=“He loves movies.
He enjoys going to cinemas.” The second user performs the operations O21 and
O22, O21=InsertCharacter(“s”, 1,1,2,6) and O22=DeleteCharacter(1,1,5,7). Op-
eration O21 inserts character “s” to correct the spelling of the word “enjoy” in
order to obtain W21=“He enjoys going to cinemas.” Operation O22 deletes the
last character from the word “cinemas” in order to obtain W21=“He enjoys
going to cinema.”

Suppose that, after performing these operations, both users try to com-
mit, but User1 gets access to the repository first, while User2’s request will
be queued. After the commit operation of User1, the last version in the repos-
itory will be V1=“He loves movies. He enjoys going to cinemas.” and the list
DL01 representing the difference between V1 and V0 in the repository will be
[O11, O12].

When User2 gets access to the repository he will receive a message to up-
date the local copy. At this moment, a merge between the list of operations
DL01 and the local list [O21, O22] is performed, i.e. according to the semantic
rules, O11 and O12 will be integrated into the local list. There is no seman-
tic conflict between O11 and either of the operations O21 and O22. Moreover,

CoDoc: Multi-mode Collaboration over Documents 591

neither of the operations O21 and O22 are operations of sentence insertion, so,
according to the treeOPT algorithm, the execution form of O11 is the same as
its original form, i.e. O′

11=InsertSentence(“He loves movies.”, 1,1). Operation
O12 will not be executed because O12 and O21 are conflicting operations. As
a result of merging, the current state of the document is: “He loves movies.
He enjoys going to cinema.” In order to compute the difference DL21 between
the current copy of the document of User2 and version V1 in the repository,
the operations in the local list [O21, O22] need to be transformed according
to the nonconflicting operations from DL01, i.e. operation O11. Because O11
inserts a sentence before the target sentence of operations O21 and O22, oper-
ations O21 and O22, will have their execution form: O′

21=InsertCharacter(“s”,
1,2,2,6) and O′

22=DeleteCharacter(1,2,5,7). Since O12 was a conflicting opera-
tion, DL21=[inverse(O12), O′

21, O′
22].

When User1 will update the local workspace, the operations in DL21 need
to be executed in their form, because no other concurrent operations have been
executed in the local workspace of User1 since the creation of version V1. So,
the local copy of the document will be “He loves movies. He enjoys going to
cinema.”

We can see that, for the collaborative text editor, the same principle of opera-
tion transformation for integrating an operation into a log containing concurrent
operations applies both for asynchronous communication as well as for real-time
communication. As in the case of the real-time mode of communication, also
in the case of the asynchronous mode of collaboration, a set of improvements
can be obtained because of the way of structuring the document. Only a few
transformations need to be performed when integrating an operation into a log
as described above, because the operations in the log are distributed throughout
the tree model of the document. Only those histories that are distributed along
a certain path in the tree are spanned and not the whole log as in the case of
a linear model of the document. For example, two operations inserting words in
two different paragraphs will not need to be transformed because they do not
interfere with each other. Moreover, the function for testing if two operations
are conflicting can be expressed more easily using the semantic units used for
structuring the documents (paragraphs, sentences, words, characters) than in
the case of a linear representation of the document. For example, rules interdict-
ing the concurrent insertion of two different words into the same sentence could
be very easily expressed and checked.

The same extension from the synchronous to the asynchronous mode of com-
munication can be achieved in the case of the graphical editor. In the case of
the updating stage of the asynchronous communication, and more specifically in
the case of merging, instead of using the operational transformation approach
as in the case of the text document, the serialization approach together with
the undo/redo scheme can be used in the same way it was used for real-time
communication. The set of conflicting operations can be expressed in the func-
tion for defining the semantic conflicts between the operations. For integrating
an operation into a log containing other concurrent operations, an undo/redo

592 Claudia-Lavinia Ignat and Moira C. Norrie

scheme is performed taking into account a set of serialization rules as explained
in [8].

4 Related Work

We have already presented the advantages of our approach that uses a hierar-
chical structure over the other approaches that use a linear structure for the
representation of the document.

In the case of the asynchronous communication, we have adopted the same
merging mechanism as in FORCE [15]. It is best suited to our requirements
since it uses operation-based merging and semantic rules for resolving conflicts.
However, in [15], the approach is described only for the linear representation of
text documents. The hierarchical representation that we have adopted in our
approach yields a set of advantages such as an increased efficiency and improve-
ments in the semantics. Moreover, we have described the synchronous/ asyn-
chronous modes of communication, not only for the case of text documents, but
also for graphical documents. Our goal is to build a general information plat-
form supporting multi-mode collaboration over general types of documents. So
far, we have considered text and graphical documents as representative for our
research.

Other research works looked at the tree representation of documents in the
case of the collaborative editing. In [18] an XML diff algorithm has been pro-
posed. The approach uses a state-based merging involving a complex mechanism
to compute the difference between the two tree structures representing the initial
and the final document, respectively. This difference is represented as a set of op-
erations that transforms the initial document into the final one. Our approach is
operation-based, the operations being kept in a history buffer during the editing
process, and therefore the comparison of tree structures is unnecessary.

The dARB algorithm [9] uses a tree structure for representing the document
and an arbitration scheme for resolving the conflicts in the case of the real-time
collaboration. The arbitration scheme decides to keep the intentions of only one
user in the case that some users perform concurrent operations that access the
same node in the tree. The arbitration is done according to priorities assigned to
operation types. For instance, the operations to create/delete words are assigned
a greater priority than the operations that modify a character in the word. There
are cases when one site wins the arbitration and it needs to send, not only the
state of the vertex itself, but maybe also the state of the parent or grandparent
of the vertex. For example, if one user performs a split of a sentence, while
another user concurrently performs some modification in the original sentence,
the user performing the split will win the arbitration and need to send to all
other users the state of the whole paragraph that contains the sentence. By
allowing the customization of specifying the conflicts for various application
domains, our approach is more general than the one defined in [9] that considers
any concurrent operations performed on a vertex of a tree to be conflicting. By
using operational transformation, we try to accommodate the intentions of all
the users and we do not need the retransmission of whole sentences, paragraphs

CoDoc: Multi-mode Collaboration over Documents 593

or, indeed, the whole document in order to maintain the same tree structure of
the document at all sites.

In [3], the operational transformation was applied to documents written in
dialects of SGML such as XML and HTML. However, the approach was applied
only for the real-time communication of these types of documents.

In [12], the authors proposed the use of the operational transformation ap-
proach for defining a general algorithm for synchronizing a file system and file
contents. The main difference between our approach and the one in [12] is that, in
our approach, semantic conflicts among operations can be defined specifically for
any application domain, while the synchronizer proposed in [12] automatically
finds a solution in the case of conflict.

5 Concluding Remarks

Rather than adopting a single solution for supporting collaboration, we propose
a customizable approach that can be adapted for various application domains
and can offer a set of solutions for the different stages of the development of a
common task. In this paper, we have described the solutions that we offer, both
in terms of the types of documents that form the basic unit of collaboration,
i.e. textual and graphical, and also in terms of the modes of collaboration, i.e.
synchronous and asynchronous. We have shown how the algorithms necessary for
supporting the asynchronous functionality extend the consistency maintenance
algorithms that we previously developed for real-time collaboration.

We use a general structured model of the document that offers a set of en-
hanced features such as increased efficiency and improvements in the semantics
and allows a general consistency model to be found for multi-mode collaboration.

We plan to evaluate our system according to some suggestions given in [4],
mainly by performing user studies for testing the functionality of our systems
and by measuring performance.

References

1. Bellini, P., Nesi, P., Spinu, M.B.: Cooperative visual manipulation of music nota-
tion. ACM Trans. on CHI, vol.9, no.3, Sept 2002, pp.194-237.

2. Berliner, B.: CVS II: Parallelizing software development. Proceedings of USENIX,
Washington D.C., 1990.

3. Davis, A.H., Sun, C.: Generalizing operational transformation to the Standard
General Markup Language. Proc. of CSCW, 2002, pp. 58-67.

4. Dewan, P.: An integrated approach to designing and evaluating collaborative ap-
plications and infrastructures. CSCW, no. 10, 2001, pp. 75-111.

5. Ellis, C.A., Gibbs, S.J.: Concurrency control in groupware systems. Proc. of the
ACM SIGMOD Conf. on Management of Data, May 1989, pp. 399-407.

6. Ignat, C.L., Norrie, M.C.: Tree-based model algorithm for maintaining consistency
in real-time collaborative editing systems. The 4th Intl. Workshop on Collaborative
Editing, CSCW, New Orleans, USA, Nov. 2002.

594 Claudia-Lavinia Ignat and Moira C. Norrie

7. Ignat, C.L., Norrie, M.C.: Customizable collaborative editor relying on treeOPT
algorithm. Proc. of the 8th ECSCW, Helsinki, Finland, Sept. 2003, pp. 315-334.

8. Ignat, C.L., Norrie, M.C.: Grouping/ungrouping in graphical collaborative editing
systems. IEEE Distributed Systems online, The 5th Intl. Workshop on Collabora-
tive Editing, 8th ECSCW, Helsinki, Finland, Sept. 2003.

9. Ionescu, M., Marsic, I.: Tree-based concurrency control in distributed groupware.
CSCW: The Journal of Collaborative Computing, vol. 12, no. 3, 2003.

10. Lippe, E., van Oosterom, N.: Operation-based merging. Proc. of the 5th ACM
SIGSOFT Symposium on Software development environments, 1992, pp. 78-87.

11. Miller, W., Myers, E.W.: A file comparison program. Software - Practice and Ex-
perience, 15(1), 1990, pp. 1025-1040.

12. Molli, P., Oster, G., Skaf-Molli, H., and Imine, A.: Using the transformational
approach to build a safe and generic data synchronizer, Group 2003 Conf., Nov.
2003.

13. Munson, J.P., Dewan, P.: A flexible object merging framework. Proc. of the ACM
Conf. on CSCW, 1994, pp 231-242.

14. Ressel, M., Nitsche-Ruhland, D., Gunzenbauser, R.: An integrating,
transformation-oriented approach to concurrency control and undo in group
editors. Proc. of the ACM Conf. on CSCW, Nov. 1996, pp. 288-297.

15. Shen, H., Sun, C.: Flexible merging for asynchronous collaborative systems. Proc.
of CoopIS/DOA/ODBASE 2002, pp. 304-321.

16. Sun, C., Ellis, C.: Operational transformation in real-time group editors: Issues,
algorithms, and achievements. Proc. of the ACM Conf. on CSCW, Seattle, Nov.
1998, pp. 59-68.

17. Tichy, W.F.: RCS- A system for version control. Software - Practice and Experi-
ence, 15(7), Jul. 1985, pp. 637-654.

18. Torii, O., Kimura, T., Segawa, J.: The consistency control system of XML docu-
ments. Symposium on Applications and the Internet, Jan. 2003.

19. Vidot, N., Cart, M., Ferrié, J., Suleiman, M.: Copies convergence in a distributed
real-time collaborative environment. Proc. of the ACM Conf. on CSCW, Philadel-
phia, USA, Dec. 2000, pp.171-180.

	1 Introduction
	2 Real-Time Collaborative Editing Systems
	2.1 Real-Time Collaborative Text Editor
	2.2 Real-Time Collaborative Graphical Editor

	3 Asynchronous Collaborative Editing Systems
	3.1 Copy/Modify/Merge Techniques
	3.2 Committing Stage
	3.3 Updating Stage

	4 Related Work
	5 Concluding Remarks
	References

