Abstract
In this paper, we introduce a problem called Quantified Integer Programming, which generalizes the Quantified Satisfiability problem (QSAT). In a Quantified Integer Program (QIP), the program variables can assume arbitrary integral values, as opposed to the boolean values that are assumed by the variables of an instance of QSAT. QIPs naturally represent 2-person integer matrix games. The Quantified Integer Programming problem is PSPACE-hard in general, since the QSAT problem is PSPACE-complete. We focus on analyzing various special cases of the general problem, with a view to discovering subclasses that are tractable. Subclasses of the general QIP problem are obtained by restricting either the constraint matrix or the quantifier specification. We show that if the constraint matrix is totally unimodular, the problem of deciding a QIP can be solved in polynomial time.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms and Applications. Prentice-Hall, Englewood Cliffs (1993)
Aspvall, B., Plass, M.F., Tarjan, R.: A linear-time algorithm for testing the truth of certain quantified boolean formulas. Information Processing Letters 8(3), 121–123 (1979)
Cadoli, M., Giovanardi, A., Schaerf, M.: An algorithm to evaluate quantified boolean formulae. In: AAAI 1998 (July 1998)
Chandru, V., Hooker, J.N.: Optimization Methods for Logical Inference. Series in Discrete Mathematics and Optimization. John Wiley & Sons Inc., New York (1999)
Gavril, F.: An efficiently solvable graph partition, problem to which many problems are reducible. Information Processing Letters 45(6), 285–290 (1993)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman Company, San Francisco (1979)
Hochbaum, D.S., Naor, J.(Seffi).: Simple and fast algorithms for linear and integer programs with two variables per inequality. SIAM Journal on Computing 23(6), 1179–1192 (1994)
Hirschberg, D.S., Wong, C.K.: A polynomial algorithm for the knapsack problem in 2 variables. JACM 23(1), 147–154 (1976)
Iwata, S., Matsui, T., McCormick, S.T.: A fast bipartite network flow algorithm for selective assembly. OR Letters, 137–143 (1998)
Johnson, D.S.: Personal Communication
Kannan, R.: A polynomial algorithm for the two-variable integer programming problem. JACM 27(1), 118–122 (1980)
Lagarias, J.C.: The computational complexity of simultaneous Diophantine approximation problems. SIAM Journal on Computing 14(1), 196–209 (1985)
McCormick, S.T.: Fast algorithms for parametric scheduling come from extensions to parametric maximum flow. Operations Research 47, 744–756 (2000)
Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. John Wiley & Sons, New York (1999)
Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, New York (1994)
Pinedo, M.: Scheduling: theory, algorithms, and systems. Prentice-Hall, Englewood Cliffs (1995)
Pugh, W.: The definition of dependence distance. Technical Report CSTR-2292, Dept. of Computer Science, Univ. of Maryland, College Park (November 1992)
Pugh, W.: The omega test: A fast and practical integer programming algorithm for dependence analysis. Comm. of the ACM 35(8), 102–114 (1992)
Revesz, P.: Safe query languages for constraint databases. ACM Transactions on Database Systems 23(1), 58–99 (1998)
Revesz, P.: The evaluation and the computational complexity of datalog queries of boolean constraints. International Journal of Algebra and Computation 8(5), 553–574 (1998)
Revesz, P.: Safe datalog queries with linear constraints. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 355–369. Springer, Heidelberg (1998)
Schaefer, T.J.: The complexity of satisfiability problems. In: Aho, A. (ed.) Proceedings of the 10th Annual ACM Symposium on Theory of Computing, pp. 216–226. ACM Press, New York City (1978)
Schrijver, A.: Theory of Linear and Integer Programming. John Wiley and Sons, New York (1987)
Stankovic, J.A., Spuri, M., Ramamritham, K., Buttazzo, G.C. (eds.): Deadline Scheduling for Real-Time Systems. Kluwer Academic Publishers, Dordrecht (1998)
Subramani, K.: On identifying simple and quantified lattice points in the 2SAT polytope. In: Calmet, J., Benhamou, B., Caprotti, O., Hénocque, L., Sorge, V., et al. (eds.) AISC 2002 and Calculemus 2002. LNCS (LNAI), vol. 2385, p. 217. Springer, Heidelberg (2002)
Subramani, K.: A specification framework for real-time scheduling. In: Grosky, W.I., Plášil, F. (eds.) SOFSEM 2002. LNCS, vol. 2540, pp. 195–207. Springer, Heidelberg (2002)
Subramani, K.: An analysis of quantified linear programs. In: Calude, C.S., Dinneen, M.J., Vajnovszki, V. (eds.) DMTCS 2003. LNCS, vol. 2731, pp. 265–277. Springer, Heidelberg (2003)
van Hentenryck, P.: Personal Communication
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Subramani, K. (2004). Analyzing Selected Quantified Integer Programs. In: Basin, D., Rusinowitch, M. (eds) Automated Reasoning. IJCAR 2004. Lecture Notes in Computer Science(), vol 3097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25984-8_26
Download citation
DOI: https://doi.org/10.1007/978-3-540-25984-8_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22345-0
Online ISBN: 978-3-540-25984-8
eBook Packages: Springer Book Archive