Skip to main content

Efficient Algorithms for Computing Modulo Permutation Theories

  • Conference paper
Automated Reasoning (IJCAR 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3097))

Included in the following conference series:

Abstract

In automated deduction it is sometimes helpful to compute modulo a set E of equations. In this paper we consider the case where E consists of permutation equations only. Here a permutation equation has the form f(x 1,...,x n )=f(x π(1),...,x π( n)) where π is a permutation on {1,...,n}. If E is allowed to be part of the input then even testing E-equality is at least as hard as testing for graph isomorphism. For a fixed set E we present a polynomial time algorithm for testing E-equality. Testing matchability and unifiability is NP-complete. We present relatively efficient algorithms for these problems. These algorithms are based on knowledge from group theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avenhaus, J., Hillenbrand, T., Löchner, B.: On using ground joinable equations in equational theorem proving. Journal of Symbolic Computation (36), 217–233 (2003)

    Google Scholar 

  2. Avenhaus, J., Plaisted, D.: General algorithms for permutations in equational inference. Journal of Automated Reasoning (26), 223–268 (2001)

    Google Scholar 

  3. Avenhaus, J.: Reduktionssysteme. Springer, Heidelberg (1995) (in German)

    MATH  Google Scholar 

  4. Avenhaus, J.: Computing in theories defined by permutative equations. Technical report, Uni. Kaiserslautern (2003), http://www-avenhaus.informatik.uni-kl.de/ag-avenhaus/berichte/2003/permutative-equations/

  5. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: [RV01], vol. 1, pp. 19–99. Elsevier, Amsterdam (2001)

    Google Scholar 

  6. Benanav, D., Kapur, D., Narendran, P.: Complexity of matching problems. In: Jouannaud, J.-P. (ed.) RTA 1985. LNCS, vol. 202, pp. 417–429. Springer, Heidelberg (1985)

    Google Scholar 

  7. Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  8. Baader, F., Snyder, W.: Unification theory. In: [RV01], vol. 1, pp. 445–533. Elsevier, Amsterdam (2001)

    Google Scholar 

  9. Cormen, T., Leiserson, C., Rivest, R.: Introduction to algorithms. MIT Press, Cambridge (1996)

    Google Scholar 

  10. de la Tour, T.B., Echenim, M.: NP-completeness results for deductive problems on stratified terms. In: Y. Vardi, M., Voronkov, A. (eds.) LPAR 2003. LNCS, vol. 2850, pp. 317–331. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Furst, M., Hopcroft, J., Luks, E.: Polynomial time algorithms for permutation groups. In: Proc. 21st IEEE Symp. on Foundations of Computer Science, pp. 36–41 (1980)

    Google Scholar 

  12. Hillenbrand, T., Löchner, B.: The next Waldmeister loop. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 486–500. Springer, Heidelberg (2002)

    Google Scholar 

  13. Jouannaud, J.-P., Kirchner, C.: Solving equations in abstract algebras: A rule-based survey of unification. In: Lassez, J.J., Plotkin, G. (eds.) Computational Logic: Essays in Honor of Alan Robinson, MIT Press, Cambridge (1991)

    Google Scholar 

  14. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: [RV01], vol. 1, pp. 371–443. Elsevier, Amsterdam (2001)

    Google Scholar 

  15. Robinson, A., Voronkov, A. (eds.): Handbook of Automated Reasoning. Elsevier, Amsterdam (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Avenhaus, J. (2004). Efficient Algorithms for Computing Modulo Permutation Theories. In: Basin, D., Rusinowitch, M. (eds) Automated Reasoning. IJCAR 2004. Lecture Notes in Computer Science(), vol 3097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25984-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-25984-8_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22345-0

  • Online ISBN: 978-3-540-25984-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics