Skip to main content

Redundancy Notions for Paramodulation with Non-monotonic Orderings

  • Conference paper
Automated Reasoning (IJCAR 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3097))

Included in the following conference series:

  • 422 Accesses

Abstract

Recently, ordered paramodulation and Knuth-Bendix completion were shown to remain complete when using non-monotonic orderings. However, these results only implied the compatibility with too weak redundancy notions and, in particular, demodulation could not be applied at all.

In this paper, we present a complete ordered paramodulation calculus compatible with powerful redundancy notions including demodulation, which strictly improves previous results.

Our results can be applied as well to obtain a Knuth-Bendix completion procedure compatible with simplification techniques, which can be used for finding, whenever it exists, a convergent TRS for a given set of equations and a (possibly non-totalizable) reduction ordering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bachmair, L., Dershowitz, N.: Equational inference, canonical proofs, and proof orderings. Journal of the ACM 41(2), 236–276 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bachmair, L., Dershowitz, N., Hsiang, J.: Orderings for equational proofs. In: First IEEE Symposium on Logic in Computer Science (LICS), Cambridge, Massachusetts, USA, June 1986, IEEE Computer Society Press, Los Alamitos (1986)

    Google Scholar 

  3. Borralleras, C., Ferreira, M., Rubio, A.: Complete monotonic semantic path orderings. In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. Journal of Logic and Computation 4(3), 217–247 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bachmair, L., Ganzinger, H.: Equational reasoning in saturationbased theorem proving. In: Bibel, W., Schmitt, P. (eds.) Automated Deduction: A Basis for Applications, Kluwer, Dordrecht (1998)

    Google Scholar 

  6. Bachmair, L., Ganzinger, H., Lynch, C., Snyder, W.: Basic paramodulation. Information and Computation 121(2), 172–192 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bofill, M., Godoy, G., Nieuwenhuis, R., Rubio, A.: Paramodulation with non-monotonic orderings. In: 14th IEEE Symposium on Logic in Computer Science (LICS), Trento, Italy (July 1999)

    Google Scholar 

  8. Bofill, M., Godoy, G., Nieuwenhuis, R., Rubio, A.: Paramodulation and Knuth-Bendix Completion with Nontotal and Nonmonotonic Orderings. Journal of Automated Reasoning 30(1), 99–120 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bofill, M., Rubio, A.: Well-foundedness is sufficient for completeness of ordered paramodulation. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, p. 456. Springer, Heidelberg (2002)

    Google Scholar 

  10. Bofill, M., Rubio, A.: Redundancy notions for paramodulation with non-monotonic orderings, Available at www.lsi.upc.es/~albert/papers.html

  11. Hsiang, J., Rusinowitch, M.: Proving refutational completeness of theorem proving strategies: the transfinite semantic tree method. Journal of the ACM 38(3), 559–587 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kamin, S., Levy, J.-J.: Two generalizations of the recursive path ordering. Unpublished note, Dept. of Computer Science. Univ. of Illinois (1980)

    Google Scholar 

  13. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 7. vol. 1, pp. 372–444. Elsevier Science Publishers and MIT Press (2001)

    Google Scholar 

  14. Wechler, W.: Universal Algebra for Computer Scientists. EATCS Monographs on Theoretical Computer Science, vol. 25. Springer, Berlin (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bofill, M., Rubio, A. (2004). Redundancy Notions for Paramodulation with Non-monotonic Orderings. In: Basin, D., Rusinowitch, M. (eds) Automated Reasoning. IJCAR 2004. Lecture Notes in Computer Science(), vol 3097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25984-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-25984-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22345-0

  • Online ISBN: 978-3-540-25984-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics