Abstract
This contribution discusses a formalization of the “negation of a concept”. The notion of “concept” has been successfully formalized in the early eighties and led to the theory of Formal Concept Analysis. Boole (1815-1864) developed a mathematical theory for human thought based on signs and classes. The formalization of the negation of concepts is needed in order to develop a mathematical theory of human thought based on “concept as a basic unit of thought”. Two approaches will be discussed: negation as a partial or as a full operation on concepts.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Birkhoff, G.: Lattices and their applications. Bull. Amer. Math. Soc. 44, 793–800 (1938)
Birkhoff, G.: What can lattices do for you? In: Abbott, J.C. (ed.) Trends in lattice Theory, Van Nostrand-Reinhold, New York, pp. 1–40 (1970)
Boole, G.: An investigation of the laws of thought on which are founded the mathematical theories of logic and probabilities. Macmillan (1854); Reprinted by Dover Publ., New york (1958)
Burris, S.: The laws of Boole’s thought.(2000), (preprint) http://www.thoralf.uwaterloo.ca/htdocs/MYWORKS/PREPRINTS/aboole.pdf
Eisler, R.: Wörtebuch der Philosophischen Begriffe. Mittler, Berlin (1929).
Ganter, B., Kwuida, L.: Representable weak dicomplementations on finite lattices. Contributions to General Algebra, J. Heyn Klagenfurt 14, 63–72 (2004)
Grätzer, G.: Lattice theory. First concepts and distributive lattices. A Series of Books in Mathematics. W. H. Freeman and Company, New York (1971)
Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer, Heidelberg (1999)
Ganter, B., Wille, R.: Contextual attribute logic. In: Tepfenhart, W., Cyre, W. (eds.) ICCS 1999. LNCS (LNAI), vol. 1640, pp. 337–338. Springer, Heidelberg (1999)
von Hentig, H.: Magier oder Magister? Über die Einheit der Wissenschaft im Verständigungsprozess. Aufl. Suhrkamp Frankfurt 1 (1974)
Klinger, J., Vormbrock, B.: Contextual Boolean logic: How did it develop? In: Ganter&, B., de Moor, A. (eds.) Using Conceptual Structures. Contributions to ICCS 2003, pp. 143–156. Shaker Verlag, Aachen (2003)
Kwuida, L.: Weakly dicomplemented lattices, Boolean algebras and double p-algebras. Technical Report MATH-AL-05-2003 (2003)
Kwuida, L.: When is a concept algebra Boolean? In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, Springer, Heidelberg (2004)
Stumme, G.: Boolesche Begriffe. Diplomarbeit. TH Darmstadt (1994)
Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets Reidel, pp. 445–470 (1982)
Wille, R.: Boolean Concept Logic. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS (LNAI), vol. 1867, pp. 317–331. Springer, Heidelberg (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kwuida, L., Tepavčević, A., Šešelja, B. (2004). Negation in Contextual Logic. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds) Conceptual Structures at Work. ICCS 2004. Lecture Notes in Computer Science(), vol 3127. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27769-9_15
Download citation
DOI: https://doi.org/10.1007/978-3-540-27769-9_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22392-4
Online ISBN: 978-3-540-27769-9
eBook Packages: Springer Book Archive