Abstract
This paper tackles the question of representing and reasoning with types and coreference in simple conceptual graphs (SGs). It presents a framework integrating a number of previous works. This proposal is guided by the usability of CGs in practice. In other words, notions should be easy to use in knowledge representation and operations for doing reasoning have to be efficiently realizable. We propose to use conjunctive concept types, which are conjunctions of primitive types. The conjunctive concept type set is defined by means of a primitive type set and a set of banned conjunctive types. For efficiency reasons our framework is based on projection. However it has been shown that projection is complete (w.r.t. logical deduction) only when SGs are in normal form. In some situations the original form of the SGs has to be kept; we thus define an extension of projection, called coref-projection, which is complete for SGs of any form. Coref-projection is in particular suitable for frameworks where it is not assumed that coreferent nodes are mergeable.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aït-Kaci, H., Nasr, R.: Login: A logic programming language with builtin inheritance. Journal of Logic Programming 3(3), 185–215 (1986)
Baget, J.-F.: Représenter des connaissances et raisonner avec des hypergraphes: de la projection à la dérivation sous contraintes. PhD thesis, Université Montpellier II (November 2001)
Baget, J.-F.: Simple conceptual graphs revisited: Hypergraphs and conjunctive types for efficient projection algorithms. In: Ganter, B., de Moor, A., Lex, W. (eds.) ICCS 2003. LNCS (LNAI), vol. 2746, Springer, Heidelberg (2003)
Beierle, C., Hedtstück, U., Pletat, U., Schmitt, P.H., Siekmann, J.H.: An order-sorted logic for knowledge representation systems. Artificial Intelligence 55(2), 149–191 (1992)
Baader, F., Molitor, R., Tobies, S.: Tractable and Decidable Fragments of Conceptual Graphs. In: Tepfenhart, W.M. (ed.) ICCS 1999. LNCS (LNAI), vol. 1640, pp. 480–493. Springer, Heidelberg (1999)
Cao, T.H., Creasy, P.N., Wuwongse, V.: Fuzzy unification and resolution proof procedure for fuzzy conceptual graph programs. In: Delugach, H.S., Keeler, M.A., Searle, L., Lukose, D., Sowa, J.F. (eds.) ICCS 1997. LNCS (LNAI), vol. 1257, pp. 386–400. Springer, Heidelberg (1997)
Carbonneill, B., Haemmerlé, O.: Rock: Un système question/réponse fondé sur le formalisme des graphes conceptuels. In: Actes du 9-ième congres RFIA, pp. 159–169 (1994)
Chein, M., Mugnier, M.-L.: Conceptual Graphs: Fundamental Notions. Revue d’Intelligence Artificielle 6(4), 365–406 (1992), Available at http://www.lirmm.fr/~mugnier/
Chein, M., Mugnier, M.-L.: Conceptual Graphs are also Graphs. Research Report RR-LIRMM 95-003, lirmm (1995), Available at http://www.lirmm.fr/~mugnier/
Chein, M., Mugnier, M.-L., Simonet, G.: Nested Graphs: A Graphbased Knowledge Representation Model with FOL Semantics. In: Proc. of KR 1998, pp. 524–534. Morgan Kaufmann, San Francisco (1998), Revised version available at http://www.lirmm.fr/~mugnier/
Dau, F.: The Logic System of Concept Graphs with Negation And Its Relationship to Predicate Logic. PhD thesis, Technische Universitat Darmstadt (2002)
Dau, F.: Concept graphs without negations: Standardmodels and standardgraphs. In: Ganter, B., de Moor, A., Lex, W. (eds.) ICCS 2003. LNCS (LNAI), vol. 2746, Springer, Heidelberg (2003)
Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambride University Press, Cambridge (2002)
Fall, A.: The foundations of taxonomic encodings. Computational Intelligence 14, 598–642 (1998)
Freese, R., Ježek, J., Nation, J.B.: Free Lattices. American Mathematical Society, Providence (1991)
Ghosh, B.C., Wuwongse, V.: A Direct Proof Procedure for Definite Conceptual Graphs Programs. In: Ellis, G., Rich, W., Levinson, R., Sowa, J.F. (eds.) ICCS 1995. LNCS (LNAI), vol. 954, pp. 158–172. Springer, Heidelberg (1995)
Kerdiles, G.: Saying it with Pictures: a logical landscape of conceptual graphs. PhD thesis, Université Montpellier II and University of Amsterdam (November 2001), Available at http://turing.wins.uva.nl/~kerdiles/
Mugnier, M.-L., Chein, M.: Représenter des connaissances et raisonner avec des graphes. Revue d’Intelligence Artificielle 10(1), 7–56 (1996), Available at http://www.lirmm.fr/~mugnier/
Mugnier, M.-L.: Knowledge Representation and Reasoning based on Graph Homomorphism. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS (LNAI), vol. 1867, pp. 172–192. Springer, Heidelberg (2000), Revised version available at http://www.lirmm.fr/~mugnier/
NCITS. Conceptual graphs: draft proposed American National Standard (dpANS). NCITS.T2/98-003 (1998); see also Sowa’s web site http://www.jfsowa.com
Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley, Reading (1984)
Thierry, E.: Sur quelques interactions entre structures de données et algorithmes efficaces. PhD thesis, Université Montpellier II (October 2001)
Wermelinger, M., Lopes, J.G.: Basic conceptual structures theory. In: Tepfenhart, W.M., Dick, J.P., Sowa, J.F. (eds.) ICCS 1994. LNCS (LNAI), vol. 835, pp. 144–159. Springer, Heidelberg (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chein, M., Mugnier, ML. (2004). Concept Types and Coreference in Simple Conceptual Graphs. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds) Conceptual Structures at Work. ICCS 2004. Lecture Notes in Computer Science(), vol 3127. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27769-9_20
Download citation
DOI: https://doi.org/10.1007/978-3-540-27769-9_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22392-4
Online ISBN: 978-3-540-27769-9
eBook Packages: Springer Book Archive