Abstract
In this paper we study two orthogonal extensions of the classical data mining problem of mining association rules, and show how they naturally interact. The first is the extension from a propositional representation to datalog, and the second is the condensed representation of frequent itemsets by means of Formal Concept Analysis (FCA). We combine the notion of frequent datalog queries with iceberg concept lattices (also called closed itemsets) of FCA and introduce two kinds of iceberg query lattices as condensed representations of frequent datalog queries. We demonstrate that iceberg query lattices provide a natural way to visualize relational association rules in a non-redundant way.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proc. SIGMOD Conf., pp. 207–216 (1993)
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. VLDB Conf. 1994, pp. 478–499 (1994) (Expanded version in IBM Report RJ9839)
Agrawal, R., Srikant, R.: Mining Sequential Patterns. In: Proc. 11th Intl. Conference on Data Engineering (ICDE 1995), Taipeh, Taiwan, March 1995, pp. 3–14 (1995)
Bastide, Y., Pasquier, N., Taouil, R., Stumme, G., Lakhal, L.: Mining minimal non-redundant association rules using frequent closed itemsets. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 972–986. Springer, Heidelberg (2000)
Bastide, Y., Taouil, R., Pasquier, N., Stumme, G., Lakhal, L.: Mining Frequent Patterns with Counting Inference. SIGKDD Explorations 2(2), 66–75 (2000) (Special Issue on Scalable Algorithms)
Bayardo, R.J.: Efficiently mining long patterns from databases. In: Proc. SIGMOD Conf., pp. 85–93 (1998)
Bayardo, R.J., Agrawal, R., Gunopulos, D.: Constraint-based rule mining in large, dense databases. In: Proc. ICDE Conf., pp. 188–197 (1999)
Brin, S., Motwani, R., Ullman, J.D., Tsur, S.: Dynamic itemset counting and implication rules for market basket data. In: Proc. SIGMOD Conf., pp. 255–264 (1997)
Carpineto, C., Romano, G.: GALOIS:An Order-Theoretic Approach to Conceptual Clustering. In: Machine Learning. Proc. ICML 1993, pp. 33–40. Morgan Kaufmann Prublishers, San Francisco (1993)
Dehaspe, L., Toivonen, H.: Discovery of frequent datalog patterns. Data Mining and Knowledge Discovery 3, 7–36 (1999)
Dehaspe, L., Toivonen, H.: Discovery of Relational Association Rules. In: Džeroski, S., Lavrač, N. (eds.) Relational Data Mining, pp. 189–212. Springer, Heidelberg (2001)
Dicky, H., Dony, C., Huchard, M., Libourel, T.: On automatic class insertion with overloading. In: OOPSLA, pp. 251–267 (1996)
Fayyad, U.M., Piatetsky–Shapiro, G., Smyth, P., Uthurusamy, R. (eds.): Advances in knowledge discovery and data mining. AAAI Press, Cambridge (1996)
Ganter, B., Reuter, K.: Finding all closed sets: A general approach. Order, pp. 283–290. Kluwer Academic Publishers, Dordrecht (1991)
Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999)
Godin, R., Mili, H., Mineau, G., Missaoui, R., Arfi, A., Chau, T.: Design of class hierarchies based on concept (Galois) lattices. TAPOS 4(2), 117–134 (1998)
Guigues, J.-L., Duquenne, V.: Famille minimale d’implication informatives résultant d’un tableau de données binaires. Mathématiques et Sciences Humaines 24(95), 5–18 (1986)
Luxenburger, M.: Implications partielles dans un contexte. Mathématiques, Informatique et Sciences Humaines 29(113), 35–55 (1991)
Luxenburger, M.: Partial implications. Part I of Implikationen, Abhängigkeiten und Galois Abbildungen. PhD thesis, TU Darmstadt. Shaker, Aachen (1993)
Mineau, G., Godin, G.R.: Automatic Structuring of Knowledge Bases by Conceptual Clustering. IEEE Transactions on Knowledge and Data Engineering 7(5), 824–829 (1995)
Missikoff, M., Scholl, M.: An algorithm for insertion into a lattice: application to type classification. In: Litwin, W., Schek, H.-J. (eds.) FODO 1989. LNCS, vol. 367, pp. 64–82. Springer, Heidelberg (1989)
Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Pruning closed itemset lattices for association rules. In: Proc. 14ièmes Journées Bases de Données Avancées (BDA 1998), Hammamet, Tunisie, pp. 177–196 (1998)
Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed itemsets for association rules. In: Proc. ICDT Conf., pp. 398–416 (1999)
Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient mining of association rules using closed itemset lattices. Journal of Information Systems 24(1), 25–46 (1999)
Pasquier, N., Taouil, R., Bastide, Y., Stumme, G., Lakhal, L.: Generating a Condensed Representation for Association Rules. J. Intelligent Information Systems (JIIS) (accepted)
Pei, J., Han, J., Mao, R.: CLOSET: An efficient algorithm for mining frequent closed itemsets. In: Proc. ACMSIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, pp. 21–30 (2000)
Schmitt, I., Saake, G.: Merging inheritance hierarchies for database integration. In: Proc. 3rd IFCIS Intl. Conf. on Cooperative Information Systems, NewYork City, Nework, USA, pp. 122–131 (August 20-22, 1998)
Srikant, R., Agrawal, R.: Mining generalized association rules. In: Proc. VLDB Conf. 1995, pp. 407–419 (1995)
Srikant, R., Vu, Q., Agrawal, R.: Mining association rules with item constraints. In: Proc. KDD Conf. 1997, pp. 67–73 (1997)
Strahringer, S., Wille, R.: Conceptual clustering via convex-ordinal structures. In: Opitz, O., Lausen, B., Klar, R. (eds.) Information and Classification, pp. 85–98. Springer, Heidelberg (1993)
Stumme, G.: Conceptual Knowledge Discovery with Frequent Concept Lattices. FB4-Preprint 2043, TU Darmstadt (1999)
Stumme, G.: Off to New Shores — Conceptual Knowledge Discovery and Processing. Intl. J. Human–Comuter Studies (IJHCS) 59(3), 287–325 ( 2003)
Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Fast Computation of Concept Lattices Using Data Mining Techniques In: Proc. 7th Intl. Workshop on Knowledge Representation Meets Databases, Berlin (August 21-22, 2000),CEUR workshop proceeding http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/
Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Intelligent Structuring and Reducing of Association Rules with Formal Concept Analysis. In: Baader, F., Brewka, G., Eiter, T. (eds.) KI 2001. LNCS (LNAI), vol. 2174, pp. 335–350. Springer, Heidelberg (2001)
Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing Iceberg Concept Lattices with Titanic. J. on Knowledge and Data Engineering (KDE) 42(2), 189–222 (2002)
Waiyamai, K., Taouil, R., Lakhal, L.: Towards an object database approach for managing concept lattices. In: Embley, D.W. (ed.) ER 1997. LNCS, vol. 1331, pp. 299–312. Springer, Heidelberg (1997)
Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered sets, Reidel, Dordrecht–Boston, pp. 445–470 (1982)
Yahia, A., Lakhal, L., Bordat, J.P., Cicchetti, R.: iO2: An algorithmic method for building inheritance graphs in object database design. In: Thalheim, B. (ed.) ER 1996. LNCS, vol. 1157, pp. 422–437. Springer, Heidelberg (1996)
Zaki, M.J., Ogihara, M.: Theoretical Foundations of Association Rules. In: 3rd SIGMOD 1998 Workshop on Research Issues in Data Mining and Knowledge Discovery (DMKD), Seattle, WA, pp. 7:1–7:8 (June 1998)
Zaki, M.J., Hsiao, C.-J.: ChARM: An efficient algorithm for closed association rule mining. Technical Report 99–10, Computer Science Dept., Rensselaer Polytechnic Institute (October 1999)
Zaki, M.J.: Generating non-redundant association rules. In: Proc. KDD 2000, pp. 34–43 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Stumme, G. (2004). Iceberg Query Lattices for Datalog. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds) Conceptual Structures at Work. ICCS 2004. Lecture Notes in Computer Science(), vol 3127. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27769-9_7
Download citation
DOI: https://doi.org/10.1007/978-3-540-27769-9_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22392-4
Online ISBN: 978-3-540-27769-9
eBook Packages: Springer Book Archive