Abstract
Induction of decision rules within the dominance–based rough set approach to the multicriteria and multiattribute classification is considered. Within this framework, we discuss two algorithms: Glance and an extended version of AllRules. The important characteristics of Glance is that it induces the set of all dominance–based rules in an incremental way. On the other hand, AllRules induces in a non–incremental way the set of all robust rules, i.e. based on objects from the set of learning examples. The main aim of this study is to compare both these algorithms. We experimentally evaluate them on several data sets. The results show that Glance and AllRules are complementary algorithms. The first one works very efficiently on data sets described by a low number of condition attributes and a high number of objects. The other one, conversely, works well on data sets characterized by a high number of attributes and a low number of objects.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blake, C., Koegh, E., Mertz, C.J.: Repository of Machine Learning.University of California at Irvine (1999), http://www.ics.uci.edu/~mlearn/MLRepositoru.html
Cichosz, P.: Learning systems.WNT, Warszawa (2000) (in Polish)
Fisher, D., Schlimmer, J.C.: A case study of incremental concept induction. In: Proceedings of the Fifth National Conference on Artificial Intelligence, Philadelphia, USA, pp. 302–507. Morgan Kauffman, San Francisco (1986)
Greco, S., Matarazzo, B., Slowinski, R.: The use of rough sets and fuzzy sets in MCDM. In: Gal, T., Stewart, T., Hanne, T. (eds.) Advances in Multiple Criteria Decision Making, pp. 14.1–14.14. Kluwer, Dordrecht (1999)
Greco, S., Matarazzo, B., Slowinski, R.: Rough sets theory for multicriteria decision analysis. European Journal of Operational Research 129(1), 1–47 (2001)
Greco, S., Matarazzo, B., Slowinski, R.: Multicriteria classification, in. In: Handbook of Data Mining and Knowledge Disocvery, pp. 318–328. Oxford Univ. Press, Oxford (2002)
Greco, S., Matarazzo, B., Slowinski, R., Stefanowski, J.: An algorithm for induction decision rules consistent with the dominance principle. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 304–313. Springer, Heidelberg (2001)
Greco, S., Matarazzo, B., Slowinski, R., Stefanowski, J.: Variable consistency model of dominance-based rough set approach. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 170–181. Springer, Heidelberg (2001)
Greco, S., Slowinski, R., Stefanowski, J.: Mining association rules in preference–ordered data. In: Hacid, M.-S., Raś, Z.W., Zighed, D.A., Kodratoff, Y. (eds.) ISMIS 2002. LNCS (LNAI), vol. 2366, pp. 442–451. Springer, Heidelberg (2002)
Grzymala–Busse, J.W.: LERS – a system for learning from examples based on rough sets. In: Slowinski, R. (ed.) Intelligent Decision Support: Handbook of Advances and Applications of Rough Sets Theory, pp. 3–18. Kluwer, Dordrecht (1992)
Grzymala–Busse, J.W.: Managing uncertainty in the machine learning from examples. In: Proceedings of the 3rd Workshop on Intelligent Information Systems, Wigry, Poland, pp. 70–84. IPI PAN Press (1994)
Grzymala–Busse, J.W., Zou, X.: Classification strategies using certain and possible rules. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 37–44. Springer, Heidelberg (1998)
Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco (2000)
Hong, J.: Learning from examples and a multi–purpose learning system AE5. Chinese Journal of Computers 12, 98–105 (1989)
Hong, J.R., Mozetic, I., Michalski, R.S.: AQ15: Incremental Learning of Attribute–based Descriptions from Examples – the Method and User’s Guide. Report ISG 85-5, UIUCDCS-F-86-949, Dept. of Computer Science, Univ. of Illinois, Urbana (1986)
Langley, P.: Elements of Machine Learning. Morgan Kaufmann, San Francisco (1996)
Lukasik, M., Luszczynski, M., Szumski, M., Zurawski, M.: Multicriteria Decision Aid Software Using Dominance Based Rough Sets and Decision Rules. Eng. B.Sc. Thesis, Poznan University of Technology (1999) (in Polish)
Michalski, R.S.: A theory and methodology of inductive learning. In: Michalski, R.S., Carbonell, J.G., Mitchell, T.M. (eds.) Machine Learning: An Artificial Intelligence Approach, vol. 1, pp. 83–134. Morgan Kaufman, San Francisco (1983)
Michalski, R.S., Larson, J.: Selection of Most Representative Training Examples and Incremental Generation of VL1 Hypothesis: the Underlying Methodology and Description of Programs ESEL and AQ11.Tech. Report UIUCDCS R 78 867, Dept. of Computer Science, Univ. of Illinois at Champaign-Urbana, Urbana (1978)
Michalski, R.S., Reinke, R.E.: Incremental learning of concept descriptions: A method and experimental results. In: Machine Intelligence, vol. XI, pp. 263–288. Clarendon Press, Oxford (1988)
Mitchell, T.: Machine Learning. Mac-Graw Hill, New York (1997)
Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer, Dordrecht (1991)
Roy, B.: Multicriteria Methodology for Decision Aiding. Kluwer, Dordrecht (1995)
Slowinski, R., Stefanowski, J., Greco, S., Matarazzo, B.: Rough sets processing of inconsistent information. Control and Cybernetics 29(1), 379–404 (2000)
Stefanowski, J.: On rough set based approaches to induction of decision rules. In: Rough Sets in Data Mining and Knowledge Discovery, vol. 1, pp. 500–529. Physica, Heidelberg (1998)
Stefanowski, J.: Algorithims of Rule Induction for Knowledge Discovery. Habilitation Thesis published as Series Rozprawy, vol. 361. Poznan Univeristy of Technology Press, Poznan (2001) (in Polish)
Stefanowski, J., Vanderpooten, D.: Induction of decision rules in classification and discovery–oriented perspectives. Int. Journal of Intelligent Systems 16(1), 11–28 (2001)
Stefanowski, J., Zurawski, M.: Incremental learning of decision rules for classification problems. Submitted to IIS-2003, New Trends in Intelligent Information Processing and Webmining Conference (2002)
Shan, N., Ziarko, W.: Data–based acquisition and incremental modification of classification rules. Computational Intelligence 11(2), 357–370 (1995)
Susmaga, R.: Experiments in incremental computation of reducts. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Data Mining and Knowledge Discovery, vol. 1, pp. 530–553. Physica, Heidelberg (1998)
Utgoff, P.E.: Incremental induction of decision trees. Machine Learning 4, 161–186 (1989)
Wojna, A.: Constraint based incremental learning of classification rules. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 428–435. Springer, Heidelberg (2001)
Xiandong, W.: Inductive learning: Algorithms and frontiers. Artificial Intelligence Review 7, 93–108 (1993)
Zurawski, M.: Algorithms of Induction of Decision Rules for Multicriteria Decision Problems. M.Sc. Thesis, Poznań University of Technology, 110 pp (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Greco, S., Słowiński, R., Stefanowski, J., Żurawski, M. (2004). Incremental versus Non-incremental Rule Induction for Multicriteria Classification. In: Peters, J.F., Skowron, A., Dubois, D., Grzymała-Busse, J.W., Inuiguchi, M., Polkowski, L. (eds) Transactions on Rough Sets II. Lecture Notes in Computer Science, vol 3135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27778-1_3
Download citation
DOI: https://doi.org/10.1007/978-3-540-27778-1_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23990-1
Online ISBN: 978-3-540-27778-1
eBook Packages: Computer ScienceComputer Science (R0)