Abstract
This paper performs a study on the pre-processing phase of the automated text classification problem. We use the linear Support Vector Machine paradigm applied to datasets written in the English and the European Portuguese languages – the Reuters and the Portuguese Attorney General’s Office datasets, respectively.
The study can be seen as a search, for the best document representation, in three different axes: the feature reduction (using linguistic information), the feature selection (using word frequencies) and the term weighting (using information retrieval measures).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Apté, C., Damerau, F., Weiss, S.: Automated learning of decision rules for text categorization. ACM Transactions on Information Systems 12(3), 233–251 (1994)
Gonçalves, T., Quaresma, P.: A preliminary approach to the multi-label classification problem of Portuguese juridical documents. In: Pires, F.M., Abreu, S.P. (eds.) EPIA 2003. LNCS (LNAI), vol. 2902, pp. 435–444. Springer, Heidelberg (2003)
Gonçalves, T., Quaresma, P.: The impact of NLP techniques in the multilabel classification problem. In: Intelligent Information Systems 2004, Advances in Soft Computing, Zakopane, Poland, May 2004, Springer, Heidelberg (2004)
Japkowicz, N.: The class imbalance problem: Significance and strategies. In: Proceedings of the 2000 International Conference on Artificial Intelligence (IC-AI 2000), vol. 1, pp. 111–117 (2000)
Joachims, T.: Learning to Classify Text Using Support Vector Machines. Kluwer Academic Publishers, Dordrecht (2002)
Nigam, K., McCallum, A., Thrun, S., Mitchell, T.: Text classification from labelled and unlabelled documents using EM. Machine Learning 39(2), 103–134 (2000)
Mladenić, D., Grobelnik, M.: Feature selection for unbalanced class distribution and Naïve Bayes. In: Proceedings of ICML 1999, 16th International Conference on Machine Learning, pp. 258–267 (1999)
Quaresma, P., Rodrigues, I.: PGR: Portuguese attorney general’s office decisions on the web. In: Bartenstein, O., Geske, U., Hannebauer, M., Yoshie, O. (eds.) INAP 2001. LNCS (LNAI), vol. 2543, pp. 51–61. Springer, Heidelberg (2003)
Salton, G., McGill, M.: Introduction to Modern Information Retrieval. McGraw-Hill, New York (1983)
Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press, Cambridge (2002)
Vapnik, V.: The nature of statistical learning theory. Springer, Heidelberg (1995)
Witten, I., Frank, E.: Data Mining: Practical machine learning tools with Java implementations. Morgan Kaufmann, San Francisco (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gonçalves, T., Quaresma, P. (2004). Using IR Techniques to Improve Automated Text Classification. In: Meziane, F., Métais, E. (eds) Natural Language Processing and Information Systems. NLDB 2004. Lecture Notes in Computer Science, vol 3136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27779-8_34
Download citation
DOI: https://doi.org/10.1007/978-3-540-27779-8_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22564-5
Online ISBN: 978-3-540-27779-8
eBook Packages: Springer Book Archive