Skip to main content

Architecture of a Medical Information Extraction System

  • Conference paper
Natural Language Processing and Information Systems (NLDB 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3136))

  • 702 Accesses

Abstract

We present in this article an innovative architecture of information extraction system applied to the medical domain. The content of documents (free texts) can be described or reduced to some relevant information. Our aim is to set a process in order to exploit efficiently the content of the documents. We will explain that the medical information extraction task can be analysed into three steps: Extraction “identify and extract a set of events and entities like date, names, medical terms”, Generation “create from these events and entities the relevant information”, Knowledge acquisition “validate and correct the extraction and generation results”. These analysis require to make various approaches in linguistic, statistic and artificial intelligent cooperate and use together specialised terminology as medical nomenclatures ICD-10 and CCMA and linguistic resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Appelt D., Israel D.: Introduction to Information Extraction Technology. In a tutorial for IJCAI-1999 (1999)

    Google Scholar 

  2. Aseltine, J.: WAVE: An Incremental Algorithm for Information Extraction. In: Proceedings of the AAAI 1999 Workshop on Machine Learning for Information Extraction (1999)

    Google Scholar 

  3. Pazienza, M.T.: Information extraction, toward scalable systems. Springer, Heidelberg (1999)

    Google Scholar 

  4. Riloff, E., Schmelzenbach, M.: An Empirical Approach to Conceptual Case Frame Acquisition. In: Proceedings of the 6th Workshop on Very Large Corpora (1998)

    Google Scholar 

  5. Califf, M.E., Mooney, R.J.: Relational Learning of Pattern-Match Rules for Information Extraction. In: Proceedings of the ACL Workshop on Natural Language Learning, pp. 9– 15 (1997)

    Google Scholar 

  6. Grishman, R.: Information Extraction: Techniques and Chalenges, pp. 10–27. Springer, Heidelberg (1997)

    Google Scholar 

  7. Fisher, D., Soderland, S., McCarthy, J., Feng, F., Lehnert, W.: Description of the Umass Systems as Used for MUC-6. In: Proceedings of the 6th MUC (1996)

    Google Scholar 

  8. Riloff E.: Automatically generating extraction patterns from untagged text. In: AAAI 1996, Portland, pp. 1044– 1049(1996)

    Google Scholar 

  9. Soderland, S., Aronow, D., Fisher, D., Aseltine, J., Lehnert, W.: Machine Learning of Text Analysis Rules for Clinical Records, CIIR Technical Report (1995)

    Google Scholar 

  10. Soderland, S., Aronow, D., Fisher, D., Aseltine, J., Lehnert, W.: CRYSTAL: Inducing a conceptual dictionary. In: Proceedings of the 14th International Joint Conference on AI, pp. 1314–1319 (1995)

    Google Scholar 

  11. Rassinoux A-M.: Extraction et représentation de la connaissance tirée de textes médicaux. Thèse. Département informatique, université de Genève, p. 322 ( 1994)

    Google Scholar 

  12. Kim, J., Moldovan, D.: Acquisition of Semantic Patterns for Information Extraction from Corpora. In: Proceedings of the 9th IEEE Conference on AI for Applications, pp. 171–176 (1993)

    Google Scholar 

  13. Riloff, E.: Automatically Constructing a Dictionary for Information Extraction Tasks. In: Proceedings of the 11th National Conference on Artificial Intelligence (AAAI 1993), Washington DC, pp. 811–816 (1993)

    Google Scholar 

  14. Fisher D., Riloff E.: Applying Statistical Methods to Small Corpora: Benefiting from a Limited Domain. In: AAAI Symposium on Probabilistic Approaches to Natural Language, pp. 47–53 (1992)

    Google Scholar 

  15. Jackson, P., Moulinier, I.: Natural Language Processing for Online Applications Text Retrieval, Extraction and Categorization. In: Natural Language Processing, pp. 75–111 (1992)

    Google Scholar 

  16. Riloff, E., Schafer, C., Yarowsky, D.: Inducing Information Extraction Systems for New Languages via Cross-Language Projection. In: Proceedings of 19th International Conference on Computational Linguistics (COLING 2002) (2002)

    Google Scholar 

  17. Pillet, V.: Méthodologie d’extraction automatique d’information à partir de la littérature scientifique en vue d’alimenter un nouveau système d’information: Application à la génétique moléculaire pour l’extraction d’information sur les interactions. Thèse. Spécialité sciences de l’information. Aix-Marseille III (2000)

    Google Scholar 

  18. Yangarber, R., Grishman, R., Tapanainen, P., Huttunen, S.: Unsupervised Discovery of Scenario-Level Patterns for Information Extraction. In: Applied Natural Language Processing Conference (ANLP), pp. 282–289 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bekhouche, D., Pollet, Y., Grilheres, B., Denis, X. (2004). Architecture of a Medical Information Extraction System. In: Meziane, F., Métais, E. (eds) Natural Language Processing and Information Systems. NLDB 2004. Lecture Notes in Computer Science, vol 3136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27779-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27779-8_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22564-5

  • Online ISBN: 978-3-540-27779-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics