

Ontology-driven Question Answering

in AquaLog

Vanessa Lopez, Enrico Motta

KMI-TR-141

April, 2004

www/kmi.open.ac.uk/publications/papers/kmi-tr-141.pdf

Ontology-driven Question Answering in AquaLog

Vanessa Lopez, Enrico Motta

Knowledge Media Institute, The Open University.
Walton Hall, Milton Keynes,
MK7 6AA, United Kingdom.

{v.lopez, e.motta}@open.ac.uk

Abstract The semantic web vision is one in which rich, ontology-based semantic
markup is widely available, both to enable sophisticated interoperability among agents
and to support human web users in locating and making sense of information. The
availability of semantic markup on the web also opens the way to novel, sophisticated
forms of question answering. AquaLog is a portable question-answering system which
takes queries expressed in natural language and an ontology as input and returns an-
swers drawn from one or more knowledge bases (KBs), which instantiate the input on-
tology with domain-specific information. AquaLog makes use of the GATE NLP plat-
form, string metrics algorithms, WordNet and a novel ontology-based relation similar-
ity service to make sense of user queries with respect to the target knowledge base. Fi-
nally, although AquaLog has primarily been designed for use with semantic web lan-
guages, it makes use of a generic plug-in mechanism, which means it can be easily in-
terfaced to different ontology servers and knowledge representation platforms.

1 Introduction

The semantic web vision [1]is one in which rich, ontology-based semantic markup is widely
available, both to enable sophisticated interoperability among agents, e.g., in the e-commerce
area, and to support human web users in locating and making sense of information. For in-
stance, tools such as Magpie [2] support sense-making and semantic web browsing by allow-
ing users to select a particular ontology and use it as a kind of ‘semantic lens’, which assists
them in making sense of the information they are looking at. As discussed by McGuinness
in her recent essay on “Question Answering on the Semantic Web” [3], the availability of
semantic markup on the web also opens the way to novel, sophisticated forms of question
answering, which not only can potentially provide increased precision and recall compared
to today’s search engines, but are also capable of offering additional functionalities, such as
i) proactively offering additional information about an answer, ii) providing measures of
reliability and trust and/or iii) explaining how the answer was derived.

While semantic information can be used in several different ways to improve question an-
swering, an important (and fairly obvious) consequence of the availability of semantic
markup on the web is that this can indeed be queried directly. For instance, we are currently
augmenting our departmental web site, http://kmi.open.ac.uk, with semantic markup, by
instantiating an ontology describing academic life [4] with information about our personnel,
projects, technologies, events, etc., which is automatically extracted from departmental data-
bases and unstructured web pages. In the context of standard, keyword-based search this
semantic markup makes it possible to ensure that standard search queries, such as “peter
scott home page kmi”, actually return Dr Peter Scott’s home page as their first result, rather
than some other resource (as indeed is the case when using current non-semantic search

http://kmi.open.ac.uk/

engines on this particular query). Moreover, as pointed out above, we can also query this
semantic markup directly. For instance, we can ask a query such as “list all the kmi projects
in the semantic web area” and, thanks to an inference engine able to reason about the seman-
tic markup and draw inferences from axioms in the ontology, we can then get the correct
answer.
This scenario is of course very similar to asking natural language queries to databases
(NLDB), which has long been an area of research in the artificial intelligence and database
communities [5] [6] [7] [8] [9], even if in the past decade has somewhat gone out of fashion
[10] [11]. However, it is our view that the semantic web provides a new and potentially very
important context in which results from this area of research can be applied. Moreover, in-
terestingly from a research point of view, it provides a new ‘twist’ on the old issues associ-
ated with NLDB research. Hence, in the first instance, the work on the AquaLog query
answering system described in this paper is based on the premise that the semantic web will
benefit from the availability of natural language query interfaces, which allow users to query
semantic markup viewed as a knowledge base. Moreover, similarly to the approach we have
adopted in the Magpie system, we believe that in the semantic web scenario it makes sense
to provide query answering systems on the semantic web, which are portable with respect to
ontologies. In other words, just like in the case of Magpie, where the user is able to select an
ontology (essentially a semantic viewpoint) and then browse the web through this semantic
filter, our AquaLog system allows the user to choose an ontology and then ask queries with
respect to the universe of discourse covered by the ontology.

2 The AquaLog Approach

AquaLog is a portable question-answering system which takes queries expressed in natural
language and an ontology as input and returns answers drawn from one or more knowledge
bases (KBs), which instantiate the input ontology with domain-specific information. As
already emphasized, a key feature of AquaLog is that it is modular with respect to the input
ontology, the aim here being that it should be zero cost to switch from one ontology to an-
other when using AquaLog.

AquaLog is part of the AQUA [12] framework for question answering on the semantic
web and in particular addresses the upstream part of the AQUA process, the translation of
NL queries into logical ones and the interpretation of these NL-derived logical queries with
respect to a given ontology and available semantic markup.

AquaLog adopts a triple-based data model and, as shown in figure 1, the role of the lin-
guistic component of AquaLog is to translate the input query into a set of intermediate tri-
ples, of the form <subject, predicate, object>. These are then further processed by a module
called the “Relation Similarity Service” (RSS), to produce ontology-compliant queries. For
example, in the context of the academic domain mentioned earlier, AquaLog is able to trans-
late the question “Who is a Professor at the Knowledge Media Institute?” into the following,
ontology-compliant logical query, <typeOf ?x Professor-in-Academia> & <works-in-unit ?x
KMi>, expressed as a conjunction of non-ground triples (i.e., triples containing variables).
The role of the RSS is to map the intermediate form, <?who, Professor, KMi> into the target,
ontology-compliant query.

There are two main reasons for adopting a triple-based data model. First of all, as Katz et
al. point out [13], although not all possible queries can be represented in the binary relational
model, in practice these occur very frequently. Secondly, RDF-based knowledge representa-
tion (KR) formalisms for the semantic web, such as RDF itself [14] or OWL [15] also sub-

scribe to this binary relational model and express statements as <subject, predicate, object>.
Hence, it makes sense for a query system targeted at the semantic web to adopt this data
model.

USER’S SESSION

QUERY
INTERFACE

ANSWERING
PROCESSING
INTERFACE

Gate
libraries Configuration

files

LINGUISTIC
COMPONENT

QUERY CLASSIFY
SERVICE

String
pattern
libraries

Configuration
files

Help RSS-IE
modules

Interpreter

WordNet
thesaurus
librariesOntologíes

Knowledge
Bases

RELATION SIMILARITY SERVICE

TRIPLES

QUERY

TRIPLES

ŌRawÕ Answer Ontology-compliant
query

Answer

UserÕs
feedback

Post-process
Semantic
modules

Figure 1. The Architecture of AquaLog

We have seen that, in common with most other NLDB systems, AquaLog divides the task of
mapping user queries to answers into two main subtasks: producing an intermediate logical
representation from the input query and mapping this intermediate query into a form consis-
tent with the target knowledge base. Moreover it explicitly restricts the range of questions
the user is allowed to ask to a set of expressions/syntactic patterns, so that the linguistic
limits of the system are obvious to the user (to avoid the effort of rephrasing questions) and
to ensure users understand whether a query to AquaLog failed for reasons which are linguis-
tic (failure to understand the linguistic structure of the question) or conceptual (failure of the
ontology to provide meaning to the concepts in the query).

In the next section we describe the AquaLog architecture in more detail.

3 The AquaLog Architecture

AquaLog was designed with the aim of making the system as flexible and as modular as
possible. It is implemented in Java as a web application, using a client-server architecture. A
key feature is the use of a plug-in mechanism, which allows AquaLog to be configured for
different KR languages. Currently we use it with our own OCML-based KR infrastructure
[16] [17], although in the future we plan to provide direct plug-in mechanisms for use with
the emerging RDF and OWL servers1.

1 In any case we are able to import and export RDF(S) and OWL from OCML, so the lack of an ex-

plicit RDF/OWL plug-in is actually not a problem in practice.

3.1 Initialization and user’s session

At initialization time the AquaLog server will access and cache basic indexing data for the
target KB(s), so that they can be efficiently accessed by the remote clients to guarantee real-
time question answering, even when multiple users access the server simultaneously.

3.2 Gate framework for natural language & query classify service

AquaLog uses the GATE [18] [19] infrastructure and resources (language resources, proc-
essing resources like ANNIE, serial controllers, etc.) to map the input query in natural lan-
guage to the triple-based data model. Communication between AquaLog and GATE takes
place through the standard GATE API. The GATE chunker used for this task does not actu-
ally generate a parse tree. As discussed by Katz et al. [20] [21], although parse trees (as for
example, the NLP parser for Stanford [22]) capture syntactic relations, they are often time-
consuming and difficult to manipulate. Moreover, we also found that in our context we
could do away with much of the parsed information. For the intermediate representation, we
use the triple-based data model rather than logic, because at this stage we do not have to
worry about getting the representation right. The role of the intermediate representation is
simply to provide an easy to manipulate input for the RSS.

After the execution of the GATE controller a set of syntactical annotations are returned
associated with the input query. Annotations include information about sentences, tokens,
nouns and verbs. For example we get voice and tense for the verbs, or categories for the
nouns, such as determinant, singular/plural, conjunction, possessive, determiner, preposition,
existential, wh-determiner, etc. When developing AquaLog we extended the set of annota-
tions returned by GATE, by identifying relations and question indicators
(which/who/when/etc.). This was achieved through the use of Jape grammars. These con-
sist of a set of phases, which run sequentially, each of which defined as a set of pattern rules.
The reason for this extension was to be able to clearly identify the scope of a relation – e.g.,
to be able to identify “has research interest” as a relation. Here we exploited the fact that
natural language commonly employs a preposition to express a relationship.

Although it is not necessary, we could improve the precision of the AquaLog linguistic
component by modifying or creating the appropriate jape rules for specific cases. For exam-
ple, the word “project” could be understood as a noun or as a verb, depending on the priority
of the rules. Another example is when some disambiguation is necessary as in the example:
“Has john research interest in ontologies?”. Here “research” could be either the last name of
John or a noun part of the relation “has research interest”2.

As shown in figure 1, the architecture also includes a post-processing semantic (PPS)
module to further process the annotations obtained from the extended GATE component. For
example when processing the query “John has research interest in ontologies”, the PPS en-
sures that the relation is identified as “has research interest”. Other more complex cases are
also dealt with.

Finally, before passing the intermediate triples to the RSS, AquaLog performs two addi-
tional checks. If it is not possible to transform the question into a term-relation form or the
question is not recognized, further explanation is given to the user, to help him to reformu-
late the question. If the question is valid, then a Query Classify Service is invoked to deter-

2 Of course a better way to express the query would be “Has John got a research interest in ontolo-

gies?”, which can be parsed with no problems. However, in our experience these slightly un-
grammatical queries are very common and it is our aim to produce a system robust enough to deal
with many of them.

mine the type of the question, e.g., a “where” question, and pass this information on to the
Relation Similarity Service.

3.3 The Relation Similarity Service

This is the backbone of the question-answering system. The RSS is called after the NL query
has been transformed into a term-relation form and classified and it is the main component
responsible for producing an ontology-compliant logical query.

Essentially the RSS tries to make sense of the input query by looking at the structure of
the ontology and the information stored in the target KBs, as well as using string similarity
matching and lexical resources, such as WordNet. There is not a single strategy here, so we
will not attempt to give a comprehensive overview of all the possible ways in which a query
can be interpreted. Rather, we will show one example, which is illustrative of the way the
RSS works.

An important aspect of the RSS is that it is interactive. In other words when unsure it will
ask the user for help, e.g., when it is not able to disambiguate between two possible relations
which can be used to interpret the query.

For example, let’s consider a simple question like “who works on the semantic web?”.
Here, the first step for the RSS is to identify that “semantic web” is actually a “research
area” in the target KB3. If a successful match is found, the problem becomes one of finding
a relation which links a person (or an organization) to the semantic web area.

Figure 2. AquaLog in action.

By analyzing the KB, AquaLog finds that the only relation between a person and the se-
mantic web area is has-research-interest and therefore suggests to the user that the question
could be interpreted in terms of this relation. If the user clicks OK, then the answer to the
query is provided. It is important to note that in order to make sense of the triple <person,
works, semantic web>, all subclasses of person need to be considered, given that the relation
has-research-interest could be defined only for researchers rather than people in general. If
multiple relations are possible candidates for interpreting the query, then string matching is

3 Naming convention vary depending on the KR used to represent the KB and may even change with

ontologies – e.g., an ontology can have slots such as “variant name” or “pretty name”. AquaLog
deals with differences between KRs by means of the plug-in mechanism. Differences between on-
tologies need to be handled by specifying this information in a configuration file.

used to determine the most likely candidate, using the relation name, eventual aliases, or
synonyms provided by lexical resources such as WordNet [23]. If no relations are found
using this method, then the user is asked to choose from the current list of candidates. How-
ever, it is important to emphasise that calling on the users to disambiguate is only done if no
information is available to AquaLog, which allows the system to disambiguate the query
directly. For instance let’s consider the two queries shown in figure 3. On the right screen we
are looking for the web address of Peter and given that the system is unable to disambiguate
between Peter-Scott, Peter-Sharpe or Peter-Whalley, user’s feedback is required. However,
on the left screen we are asking for the web address of Peter, who has an interest in knowl-
edge reuse. In this case AquaLog does not need assistance from the user, given that only one
of the three Peters has an interest in knowledge reuse.

Figure 3. Automatic or user-driven disambiguation.

A typical situation the RSS has to cope with is one in which the structure of the interme-
diate query does not match the way the information is represented in the ontology. For in-
stance, the query “which are the publications of John?” may be parsed into <John, publica-
tions, something>, while the ontology may be organized in terms of <Publication, has-
author, Author>. Also in these cases the RSS is able to reason about the mismatch and gen-
erate the correct logical query.

3.4 Helping the user making sense of the information

We have already mentioned that AquaLog is an interactive system. If the RSS fails to make
sense of a query, the user is asked to help choose the right relation or instance. Moreover, in
order to help the user, AquaLog shows as much information as possible about the current
query, including both information drawn from WordNet and from the ontology – see figure
4.

Figure 4. Providing additional information

Finally, when answers are presented to the user, it is also possible for him/her to use these
answers as starting points for navigating the KB – see figure 5.

Figure 5. Navigating the KB starting from answers to queries.

3.5 String matching algorithms

String algorithms are used to find patterns in the ontology for any of the terms inside the
intermediate triples obtained from the user’s query. They are based on String Distance Met-
rics for Name-Matching Tasks, using an open-source from the Carnegie Mellon University
in Pittsburgh [24]. This comprises a number of string distance metrics proposed by different
communities, including edit-distance metrics, fast heuristic string comparators, token-based
distance metrics, and hybrid methods. The conclusions of an experimental comparison of
metrics realized by the University of Pittsburgh states: “Overall, the best-performing method
is an hybrid scheme combining a TFIDF weighting scheme … with the Jaro-Winkler string
distance scheme, developed in the probabilistic record linkage community”.

However, it is not recommendable to trust just one metric. Experimental comparisons us-
ing the AKT ontology with different metrics show that the best performance is obtained with
a combination of the following metrics: JaroWinkler, Level2JaroWinkler and Jaro.
A key aspect of using metrics is thresholds. By default two kinds of thresholds are used,
called: “trustable” and “did you mean?”, where the former is of course always preferable to
the latter. AquaLog uses different thresholds depending on whether it is looking for concepts
names, relations or instances.

4 Evaluation

4.1 Scenario and results

A full evaluation of AquaLog will require both an evaluation of its query answering ability
as well an evaluation of the overall user experience. Moreover, because one of our key aims
is to make AquaLog portable across ontologies, this aspect will also have to be evaluated
formally. While a full evaluation has not been carried out yet, we performed an initial study,
whose aim was to assess to what extent the AquaLog application built using AquaLog with
the AKT ontology and the KMi knowledge base satisfied user expectations about the range
of questions the system should be able to answer. A second aim of the experiment was also
to provide information about the nature of the possible extensions needed to the ontology
and the linguistic components – i.e., not only we wanted to assess the current coverage of the
system but also get some data about the complexity of the possible changes required to gen-
erate the next version of the system. Thus, we asked ten members of KMi, none of whom
has been involved in the AquaLog project, to generate questions for the system. Because one
of the aims of the experiment was to measure the linguistic coverage of the system with
respect to user needs, we did not provide them with any information about the linguistic
ability of the system. However, we did tell them something about the conceptual coverage
of the ontology, pointing out that its aim was to model the key elements of a research lab,
such as publications, technologies, projects, research areas, people, etc.
We also pointed out that the current KB is limited in its handling of temporal information,
therefore we asked them not to ask questions which required sophisticated temporal reason-
ing. Because no ‘quality control’ was carried out on the questions, it was perfectly OK for
these to contain spelling mistakes and even grammatical errors.

We collected in total 76 different questions, 37 of which were handled correctly by
AquaLog, i.e., 48.68% of the total. This was a pretty good result, considering that no lin-
guistic restriction was imposed on the questions.

We analyzed the failures and divided them into the following five categories (the total
adds up to more than 37 because a query may fail at several different levels):

• Linguistic failure. This occurs when the NLP component is unable to generate the in-
termediate representation (but the question can usually be reformulated and answered).
This was by far the most common problem, occurring in 27 of the 39 queries not han-
dled by AquaLog (69%).

• Data model failure. This occurs when the NL query is simply too complicated for the
intermediate representation. Intriguingly this type of failure never occurred, and our in-
tuition is that this was the case not only because the relational model is actually a pretty
good way to model queries but also because the ontology-driven nature of the exercise

ensured that people only formulated queries that could in theory (if not in practice) be
answered by reasoning about the departmental KB.

• RSS failure. This occurs when the relation similarity service of AquaLog is unable to
map an intermediate representation to the correct ontology-compliant logical expres-
sion. Only 3 of the 39 queries not handled by AquaLog (7.6%) fall into this category.

• Conceptual failure. This occurs when the ontology does not cover the query. Only 4
of the 39 queries not handled by AquaLog (10.2%) failed for this reason.

• Service failure. Several queries essentially asked for services to be defined over the
ontologies. For instance one query asked about “the top researchers”, which requires a
mechanism for ranking researchers in the lab - people could be ranked according to ci-
tation impact, formal status in the department, etc. In the context of the semantic web,
we believe that these failures are less to do with shortcomings of the ontology than with
the lack of appropriate services, defined over the ontology. Therefore we defined this
additional category which accounted for 8 of the 39 failures (20.5%).

4.2 Discussion

Here we briefly discuss the issues raised by the evaluation study and in particular what can
be done to improve the performance of the AquaLog system.
Service failures can of course be solved by implementing the appropriate services. Some of
these can actually be to some extent ontology-independent, such as “similarity services”,
which can answer questions like “Is there a project similar to AKT?”. Other services can be
generically categorized (e.g., “ranking services”), but will have to be defined for specific
concepts in an ontology, such as mechanisms to rank people publications, or projects. Here
we envisage a solution similar to the one used in the Magpie tool [2], where service develop-
ers are given publishing rights to develop and associate services to concepts in an ontology,
using semantic web service platforms such as IRS-II [25].
The few RSS failures basically highlighted bugs in AquaLog all of which can be fixed quite
easily. A clear example of this is the query “who funds the magpie project”, where “who” is
understood to be a person, while it of course can also be an organization or funding body.
The few conceptual failures are also easy to fix, they highlighted omissions in the ontology.

The most common and problematic errors are linguistic ones, which occurred for a num-
ber of reasons:

In some cases people asked new types of basic queries outside the current linguistic cov-
erage, formed with: “how long”, “there are/is”, “are/is there any”, “how many”, etc.

 Some problems were due to combinations of basic queries, such as “What are the publi-
cations in KMi related to social aspects in collaboration and learning?”, which the NLP
component of AquaLog cannot currently untangle correctly. Another example is when one
of the terms is “hidden” because it is included in the relation but actually it is not part of the
relation, as for example in “Who are the partners involved in the AKT project?” One may
think the relation is “partners involved in” between persons and projects, however the rela-
tion is “involved in” between “partners” and “projects”.

Sometimes queries fail because of a combination of different reasons. For instance,
“which main areas are corporately funded?”, falls within the category of ranking failure, but
it is also a linguistic and conceptual failure (the latter because the ontology lacks a funding
relationship between research-areas and corporations).

In sum, our estimation is that the implementation of the ranking services plus extending
the NLP component to cover the basic queries not yet handled linguistically will address 14
of the 39 failures (35.89%). An implementation of new mechanisms to handle combinations

of basic queries will address another 12 failures (30.7%). Hence, removing redundancies and
including also the fixes to the ontology, with both implementations it will be possible to
handle 34 of the 39 failures, thus potentially achieving a 87% hit rate for AquaLog. Al-
though a more detailed analysis of these problems may be needed, at this stage it does not
seem particularly problematic to add these functionalities to AquaLog.

5 Related Work

We already pointed out that research in natural language interfaces to databases is currently
a bit ‘dormant’ (although see [26] for recent work in the area), therefore it is not surprising
that most current work on question answering is somewhat different in nature from
AquaLog. Natural language search engines such as AskJeeves [27] and EasyAsk [28] exist,
as well as systems such as START [13] and REXTOR [21], whose goal is to extract answers
from text. AnswerBus [29] is another open-domain question-answering system based on web
information retrieval. FAQ Finder [30] is a natural language question-answering system that
uses files of FAQs as its knowledge base; it also uses WordNet to improve its ability to
match questions to answers, using two metrics: statistical similarity and semantic similarity.

PRECISE [26] maps questions to the corresponding SQL query, by identifying classes of
questions that are easy to understand in a well defined sense: the paper defines a formal
notion of semantically tractable questions. Questions are sets of attribute/value pairs and a
relation token corresponds to either an attribute token or a value token. Apart from the dif-
ferences in terminology this is actually similar to the AquaLog model. In PRECISE, like in
AquaLog, a lexicon is used to find synonyms. In PRECISE the problem of finding a map-
ping from the tokenization to the database is reduced to a graph matching problem. The main
difference with AquaLog is that in PRECISE all tokens must be distinct, questions with
unknown words are not semantically tractable and cannot be handled. In contrast with
PRECISE, although AquaLog also uses pattern matching to identify at least one of the terms
of the relation, it is still able in many cases to interpret the query, even if the words in the
relation are not recognized (i.e., there is no match to any concept or relation in the ontology).
The reason for this is that AquaLog is able to reason about the structure of the ontology to
make sense of relations which appear to have no match to the KB. Using the example sug-
gested in [26], AquaLog would not necessarily know the term “neighborhood”, but it might
know that it must look for the value of a relation defined for cities. In many cases this infor-
mation is all AquaLog needs to interpret the query.

MASQUE/SQL [7] is a portable natural language front-end to SQL databases. The semi-
automatic configuration procedure uses a built-in domain editor which helps the user to
describe the entity types to which the database refers, using an is-a hierarchy, and then de-
clare the words expected to appear in the NL questions and define their meaning in terms of
a logic predicate that is linked to a database table/view. In contrast with MASQUE/SQL
AquaLog uses the ontology to describe the entities with no need for an intensive configura-
tion procedure.

6 Conclusion

In this paper we have described the AquaLog query answering system, emphasizing its gene-
sis in the context of semantic web research. Although only initial evaluation results are avail-
able, the approach used by AquaLog, which relies on a RSS component able to use informa-

tion about the current ontology, string matching and similarity measures to interpret the
intermediate queries generated by the NLP component, appears very promising. Moreover,
in contrast with other systems AquaLog requires very little configuration effort. For the
future we plan to make the AquaLog linguistic component more robust, primarily on the
basis of the feedback received from the evaluation study carried out on the KMi domain. In
addition we also intend to carry out a formal analysis of the RSS component to provide a
more accurate and formal account of its competence. As already mentioned, more compre-
hensive evaluation studies will also be needed. Finally, although the ontology-driven ap-
proach provides one of the main strength of AquaLog we have also started to investigate the
possibility of accessing more than one ontology simultaneously in a transparent way for the
user [31].

7 Acknowledgements

The authors would like to thank Maria Vargas-Vera and John Domingue for useful input on
AquaLog and related topics. We are also grateful to Kalina Bontcheva for assistance with the
use of the GATE NLP component. Finally we would like to thank all those members of the
lab who took part in the preliminary evaluation of AquaLog.

8 References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American, 284(5), 2001.
2. Dzbor, M., Domingue, J., Motta, E.: Magpie – Towards a Semantic Web Browser. Proceedings

of the 2nd International Semantic Web Conference (ISWC2003), Lecture Notes in Computer Sci-
ence, 2870/2003, Springer-Verlag, 2003

3. Mc Guinness, D.: Question Answering on the Semantic Web. IEEE Intelligent Systems, 19(1),
2004.

4. AKT Reference Ontology, http://kmi.open.ac.uk/projects/akt/ref-onto/index.html.
5. Burger, J., Cardie, C., Chaudhri, V., et al.: Tasks and Program Structures to Roadmap Research

in Question & Answering (Q&A). NIST Technical Report, 2001. PDF available from
http://www.ai.mit.edu/people/jimmylin/%0Apapers/Burger00-Roadmap.pdf.

6. Kaplan, J.: Designing a portable natural language database query system. ACM Transactions on
Database Systems 9(1), pp. 1-19, 1984.

7. Androutsopoulos, I., Ritchie, G.D., and Thanisch, P.: MASQUE/SQL - An Efficient and Portable
Natural Language Query Interface for Relational Databases. In Chung, P.W. Lovegrove, G. and
Ali, M. (Eds.), Proceedings of the 6th International Conference on Industrial and Engineering
Applications of Artificial Intelligence and Expert Systems, Edinburgh, U.K., pp. 327-330. Gordon
and Breach Publishers, 1993.

8. Chu-Carroll, J., Ferrucci, D., Prager, J., Welty, C.: Hybridization in Question Answering Sys-
tems. In Maybury, M. (editor), New Directions in Question Answering, AAAI Press, 2003.

9. Jung, H., Geunbae Lee, G.: Multilingual Question Answering with High Portability on Relational
Databases. IEICE transactions on information and systems, E86-D(2), pp306-315, Feb 2003.

10. Androutsopoulos, I., Ritchie, G.D., Thanisch P.: Natural Language Interfaces to Databases - An
Introduction. Natural Language Engineering, 1(1), pp. 29-81, Cambridge University Press, 1995.

11. Hunter, A.: Natural language database interfaces. Knowledge Management, May 2000.
12. Vargas-Vera, M., Motta, E., Domingue, J.: AQUA: An Ontology-Driven Question Answering

System. In Maybury, M. (editor), New Directions in Question Answering, AAAI Press (2003).
12.a. Vargas-Vera, M. and Motta, E. (2004). AQUA - Ontology-based Question Answering System.

Third International Mexican Conference on Artificial Intelligence (MICAI-2004), Lecture Notes
in Computer Science (LNCS 2972), Springer-Verlag, April 26-30, 2004. ISBN 3-540-21459-3.

http://kmi.open.ac.uk/projects/akt/ref-onto/index.html
http://www.ai.mit.edu/people/jimmylin/%0Apapers/Burger00-Roadmap.pdf
http://www.aueb.gr/users/ion/docs/masque_sql_paper.pdf
http://www.aueb.gr/users/ion/docs/masque_sql_paper.pdf

13. Katz, B., Felshin, S., Yuret, D., Ibrahim, A., Lin, J., Marton, G., McFarland A. J., Temelkuran,
B.: Omnibase: Uniform Access to Heterogeneous Data for Question Answering.. Proceedings of
the 7th International Workshop on Applications of Natural Language to Information Systems
(NLDB), 2002.

14. RDF: http://www.w3.org/RDF/.
15. Mc Guinness, D., van Harmelen, F.: OWL Web Ontology Language Overview. W3C Recom-

mendation 10 (2004) http://www.w3.org/TR/owl-features/.
16. Motta, E.: Reusable Components for Knowledge Modelling. IOS Press, Amsterdam, The Nether-

lands. (1999).
17. WebOnto project: http://plainmoor.open.ac.uk/webonto.
18. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A Framework and Graphical

Development Environment for Robust NLP Tools and Applications. Proceedings of the 40th An-
niversary Meeting of the Association for Computational Linguistics ACL'02. Philadelphia, 2002.

19. Tablan, V., Maynard, D., Bontcheva, K.: GATE --- A Concise User Guide. University of Shef-
field, UK. http://gate.ac.uk/.

20. Katz, B., Lin, J.: Selectively Using Relations to Improve Precision in Question Answering. Pro-
ceedings of the EACL-2003. Workshop on Natural Language Processing for Question Answer-
ing, 2003.

21. Katz, B., Lin, J.: REXTOR: A System for Generating Relations from Natural Language. Pro-
ceedings of the ACL 2000 Workshop of Natural Language Processing and Information Retrieval
(NLP&IR), 2000.

22. Klein, D. and Manning, C. D.: Fast Exact Inference with a Factored Model for Natural Language
Parsing. Advances in Neural Information Processing Systems 15, 2002.

23. Fellbaum, C. (editor), WordNet, An Electronic Lexical Database. Bradford Books, May 1998.
24. Cohen, W., W., Ravikumar, P., Fienberg, S., E.: A Comparison of String Distance Metrics for

Name-Matching Tasks. In IIWeb Workshop 2003, PDF available from http://www-
2.cs.cmu.edu/~wcohen/postscript/ijcai-ws-2003.pdf, 2003.

25. Motta, E., Domingue, J., Cabral, L., Gaspari, M.: IRS–II: A Framework and Infrastructure for
Semantic Web Services, 2nd International Semantic Web Conference (ISWC2003), Lecture
Notes in Computer Science, 2870/2003, Springer-Verlag, 2003.

26. Popescu, A., M., Etzioni, O., Kautz, H., A.: Towards a theory of natural language interfaces to
databases. Proceedings of the 2003 International Conference on Intelligent User Inter-
faces, January 12-15, 2003, pp. 149-157, Miami, FL, USA.

27. AskJeeves: http://www.ask.co.uk.
28. EasyAsk: http://www.easyask.com.
29. Zheng, Z.: The AnswerBus Question Answering System. Proc. of the Human Language Tech-

nology Conference (HLT 2002). San Diego, CA. March 24-27, 2002.
30. Burke, R., D., Hammond, K., J., Kulyukin, V.:. Question Answering from Frequently-Asked

Question Files: Experiences with the FAQ Finder system. Tech. Rep. TR-97-05, Department of
Computer Science, University of Chicago, 1997.

31. Waldinger, R., Appelt, D. E., et al.: Deductive Question Answering from Multiple Resources. In
Maybury, M. (editor), New Directions in Question Answering, AAAI Press, 2003.

http://www.w3.org/RDF/
http://plainmoor.open.ac.uk/webonto
http://gate.ac.uk/
http://www-2.cs.cmu.edu/~wcohen/postscript/ijcai-ws-2003.pdf
http://www-2.cs.cmu.edu/~wcohen/postscript/ijcai-ws-2003.pdf
http://www.easyask.com/

	Initialization and user’s session
	Gate framework for natural language & query classify service
	The Relation Similarity Service
	Helping the user making sense of the information
	String matching algorithms
	Scenario and results
	Discussion

