Abstract
Data sets, described by decision tables, are incomplete when for some cases (examples, objects) the corresponding attribute values are missing, e.g., are lost or represent “do not care” conditions. This paper shows an extremely useful technique to work with incomplete decision tables using a block of an attribute-value pair. Incomplete decision tables are described by characteristic relations in the same way complete decision tables are described by indiscernibility relations. These characteristic relations are conveniently determined by blocks of attribute-value pairs. Three different kinds of lower and upper approximations for incomplete decision tables may be easily computed from characteristic relations. All three definitions are reduced to the same definition of the indiscernibility relation when the decision table is complete. This paper shows how to induce certain and possible rules for incomplete decision tables using MLEM2, an outgrow of the rule induction algorithm LEM2, again, using blocks of attribute-value pairs. Additionally, the MLEM2 may induce rules from incomplete decision tables with numerical attributes as well.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chan, C.C., Grzymala-Busse, J.W.: On the attribute redundancy and the learning programs ID3, PRISM, and LEM2. Department of Computer Science, University of Kansas, TR-91-14, p. 20 (December 1991)
Grzymala-Busse, J.W.: Knowledge acquisition under uncertainty – A rough set approach. Journal of Intelligent & Robotic Systems 1, 3–16 (1988)
Grzymala-Busse, J.W.: On the unknown attribute values in learning from examples. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1991. LNCS, vol. 542, pp. 368–377. Springer, Heidelberg (1991)
Grzymala-Busse, J.W.: LERS – A system for learning from examples based on rough sets. In: Slowinski, R. (ed.) Intelligent Decision Support, Handbook of Applications and Advances of the Rough Sets Theory, pp. 3–18. Kluwer Academic Publishers, Dordrecht (1992)
Grzymala-Busse., J.W.: MLEM2: A new algorithm for rule induction from imperfect data. In: Proceedings of the 9th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2002, Annecy, France, July 1-5, pp. 243–250 (2002)
Grzymala-Busse, J.W.: Rough set strategies to data with missing attribute values. In: Workshop Notes, Foundations and New Directions of Data Mining, the 3-rd International Conference on Data Mining, Melbourne, FL, USA, November 19-22, pp. 56–63 (2003)
Grzymala-Busse, J.W., Hu, M.: A comparison of several approaches to missing attribute values in data mining. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 340–347. Springer, Heidelberg (2000)
Grzymala-Busse, J.W., Wang, A.Y.: Modified algorithms LEM1 and LEM2 for rule induction from data with missing attribute values. In: Proc. of the Fifth International Workshop on Rough Sets and Soft Computing (RSSC 1997) at the Third Joint Conference on Information Sciences (JCIS 1997), Research Triangle Park, NC, March 2-5, pp. 69–72 (1997)
Kryszkiewicz, M.: Rough set approach to incomplete information systems. In: Proceedings of the Second Annual Joint Conference on Information Sciences, Wrightsville Beach, NC, September 28-October 1, pp. 194–197 (1995)
Kryszkiewicz, M.: Rules in incomplete information systems. Information Sciences 113, 271–292 (1999)
Pawlak, Z.: Rough Sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)
Pawlak, Z.: Rough Sets. In: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)
Stefanowski, J.: Algorithms of Decision Rule Induction in Data Mining. Poznan University of Technology Press, Poznan (2001)
Stefanowski, J., Tsoukias, A.: On the extension of rough sets under incomplete information. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 73–81. Springer, Heidelberg (1999)
Stefanowski, J., Tsoukias, A.: Incomplete information tables and rough classification. Computational Intelligence 17, 545–566 (2001)
Yao, Y.Y.: Two views of the theory of rough sets in finite universes. International J. of Approximate Reasoning 15, 291–317 (1996)
Yao, Y.Y.: Relational interpretations of neighborhood operators and rough set approximation operators. Information Sciences 111, 239–259 (1998)
Yao, Y.Y.: On the generalizing rough set theory. In: Proc. of the 9th Int. Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC 2003), Chongqing, China, October 19-22, pp. 44–51(2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Grzymala-Busse, J.W. (2004). Data with Missing Attribute Values: Generalization of Indiscernibility Relation and Rule Induction. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B., Świniarski, R.W., Szczuka, M.S. (eds) Transactions on Rough Sets I. Lecture Notes in Computer Science, vol 3100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27794-1_3
Download citation
DOI: https://doi.org/10.1007/978-3-540-27794-1_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22374-0
Online ISBN: 978-3-540-27794-1
eBook Packages: Springer Book Archive