Skip to main content

The Worst-Case Time Complexity for Generating All Maximal Cliques

  • Conference paper
Computing and Combinatorics (COCOON 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3106))

Included in the following conference series:

  • 671 Accesses

Abstract

We present a depth-first search algorithm for generating all maximal cliques of an undirected graph, in which pruning methods are employed as in Bron and Kerbosch’s algorithm. All maximal cliques generated are output in a tree-like form. Then we prove that its worst-case time complexity is O(3n/3) for an n-vertex graph. This is optimal as a function of n, since there exist up to 3n/3 cliques in an n-vertex graph.

This research has been supported in part by Grants-in-Aid for Scientific Research Nos. 13680435 and 16300001 from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and Research Fund of the University of Electro-Communications. It is also given a grant by Funai Foundation for Information Technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akutsu, T., Hayashida, M., Tomita, E., Suzuki, J., Horimoto, K.: Protein threading with profiles and constraints. In: Proc. IEEE Symp. on Bioinformatics and Bioengineering (2004) (to appear)

    Google Scholar 

  2. Bahadur, D., Akutsu, K.C.T., Tomita, E., Seki, T., Fujiyama, A.: Point matching under non-uniform distortions and protein side chain packing based on efficient maximum clique algorithms. Genome Informatics 13, 143–152 (2002)

    Google Scholar 

  3. Bahadur, D., Akutsu, K.C.T., Tomita, E., Seki, T.: Protein side-chain packing: A maximum edge weight clique algorithmic approach. In: Proc. Asia-Pacific Bioinformatics Conf., pp. 191–200 (2004)

    Google Scholar 

  4. Bomze, M., Budinich, M., Pardalos, P.M., Pelillo, M.: The maximum clique problem. In: Du, D.-Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization Supplement vol. A, pp. 1–74. Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  5. Bron, C., Kerbosch, J.: Algorithm 457, Finding all cliques of an undirected graph, Comm. ACM 16, 575–577 (1973)

    Article  MATH  Google Scholar 

  6. Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J. Comput 14, 210–223 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hattori, M., Okuno, Y., Goto, S., Kanehisa, M.: Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. J. Am. Chem. Soc. 125, 11853–11865 (2003)

    Article  Google Scholar 

  8. Kobayashi, S., Kondo, T., Okuda, K., Tomita, E.: Extracting globally structure free sequences by local structure freeness. In: Proc. DNA9, p. 206 (2003)

    Google Scholar 

  9. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Generating all maximal independent sets, NP-hardness and polynomial-time algorithms. SIAM J. Comput. 9, 558–565 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  10. Mohseni-Zadeh, S., Louis, A., Brézellec, P., Risler, J.-L.: PHYTOPROT: a database of clusters of plant proteins. Nucleic Acids Res. 32, D351–D353 (2004)

    Article  Google Scholar 

  11. Moon, J.W., Moser, L.: On cliques in graphs. Israel J. Math. 3, 23–28 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  12. Tomita, E., Seki, T.: An efficient branch-and-bound algorithm for finding a maximum clique. In: Calude, C.S., Dinneen, M.J., Vajnovszki, V. (eds.) DMTCS 2003. LNCS, vol. 2731, pp. 278–289. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Tomita, E., Tanaka, A., Takahashi, H.: An optimal algorithm for finding all the cliques, Technical Report of IPSJ, 1989-AL-12, pp. 91–98 (1989)

    Google Scholar 

  14. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating all the maximal independent sets. SIAM J. Comput. 6, 505–517 (1977)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tomita, E., Tanaka, A., Takahashi, H. (2004). The Worst-Case Time Complexity for Generating All Maximal Cliques. In: Chwa, KY., Munro, J.I.J. (eds) Computing and Combinatorics. COCOON 2004. Lecture Notes in Computer Science, vol 3106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27798-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27798-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22856-1

  • Online ISBN: 978-3-540-27798-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics