Skip to main content

Progress on Maximum Weight Triangulation

  • Conference paper
Computing and Combinatorics (COCOON 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3106))

Included in the following conference series:

  • 601 Accesses

Abstract

In this paper, we investigate the maximum weight triangulation of a point set in the plane. We prove that the weight of maximum weight triangulation of any planar point set with diameter D is bounded above by \(((2\epsilon+2) \cdot n + \frac{\pi(1-2\epsilon)}{8\epsilon\sqrt{1-\epsilon^2}} + \frac{\pi}{2} -- 5(\epsilon +1)) D\), where ε for \(0 < \epsilon \leq \frac{1}{2}\) is a constant and n is the numb er of points in the set. If we use ‘spoke-scan’ algorithm to find a triangulation of the point set, we obtain an approximation ratio of 4.238. Furthermore, if the point set forms a ‘semi-lune’ or a ‘semi-circled’ convex polygon’, then its maximum weight triangulation can be found in O(n 2) time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Scott, P.R., Awyong, P.W.: Inequalities for convex sets. Journal of Inequalities in Pure and Applied Mathematics 1(1), Article 6 (2000)

    Google Scholar 

  2. Yaglom, I.M., Boltyanskli, V.G.: Convex figures (Translated by P.J.Kelly and L.F. Walton). Holt, Rinehart and Winston, New York (1961)

    MATH  Google Scholar 

  3. Gilbert, P.: New results on planar triangulations, Tech. Rep. ACT-15, Coord. Sci. Lab., University of Illinois at Urbana (1979)

    Google Scholar 

  4. Hu, S.: A constant-factor approximation for Maximum Weight triangulation. In: Proceeding of 15th Canadian Conference of Computational Geometry, Halifax, NS Canada, pp. 150–154.

    Google Scholar 

  5. Klincsek, G.: Minimal triangulations of polygonal domains. Annual Discrete Mathematics 9, 121–123 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  6. Levcopoulos, C., Lingas, A.: On approximation behavior of the greedy triangulation for convex polygon. Algorithmica 2, 175–193 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  7. Levcopoulos, C., Krznaric, D.: Quasi-Greedy Triangulations Approximating the Minimum Weight Triangulation. In: Proceeding of the 7th ACM-SIAM Symposium on Discrete Algorithms(SODA), pp. 392–401 (1996)

    Google Scholar 

  8. Preparata, F., Shamos, M.: Computational Geometry. Springer, Heidelberg (1985)

    Google Scholar 

  9. Wang, C., Chin, F., Yang, B.: Maximum Weight triangulation and graph drawing. The Information Processing Letters 70, 17–22 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chin, F.Y.L., Qian, J., Wang, C.A. (2004). Progress on Maximum Weight Triangulation. In: Chwa, KY., Munro, J.I.J. (eds) Computing and Combinatorics. COCOON 2004. Lecture Notes in Computer Science, vol 3106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27798-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27798-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22856-1

  • Online ISBN: 978-3-540-27798-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics