Abstract
In this paper, we investigate the maximum weight triangulation of a point set in the plane. We prove that the weight of maximum weight triangulation of any planar point set with diameter D is bounded above by \(((2\epsilon+2) \cdot n + \frac{\pi(1-2\epsilon)}{8\epsilon\sqrt{1-\epsilon^2}} + \frac{\pi}{2} -- 5(\epsilon +1)) D\), where ε for \(0 < \epsilon \leq \frac{1}{2}\) is a constant and n is the numb er of points in the set. If we use ‘spoke-scan’ algorithm to find a triangulation of the point set, we obtain an approximation ratio of 4.238. Furthermore, if the point set forms a ‘semi-lune’ or a ‘semi-circled’ convex polygon’, then its maximum weight triangulation can be found in O(n 2) time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Scott, P.R., Awyong, P.W.: Inequalities for convex sets. Journal of Inequalities in Pure and Applied Mathematics 1(1), Article 6 (2000)
Yaglom, I.M., Boltyanskli, V.G.: Convex figures (Translated by P.J.Kelly and L.F. Walton). Holt, Rinehart and Winston, New York (1961)
Gilbert, P.: New results on planar triangulations, Tech. Rep. ACT-15, Coord. Sci. Lab., University of Illinois at Urbana (1979)
Hu, S.: A constant-factor approximation for Maximum Weight triangulation. In: Proceeding of 15th Canadian Conference of Computational Geometry, Halifax, NS Canada, pp. 150–154.
Klincsek, G.: Minimal triangulations of polygonal domains. Annual Discrete Mathematics 9, 121–123 (1980)
Levcopoulos, C., Lingas, A.: On approximation behavior of the greedy triangulation for convex polygon. Algorithmica 2, 175–193 (1987)
Levcopoulos, C., Krznaric, D.: Quasi-Greedy Triangulations Approximating the Minimum Weight Triangulation. In: Proceeding of the 7th ACM-SIAM Symposium on Discrete Algorithms(SODA), pp. 392–401 (1996)
Preparata, F., Shamos, M.: Computational Geometry. Springer, Heidelberg (1985)
Wang, C., Chin, F., Yang, B.: Maximum Weight triangulation and graph drawing. The Information Processing Letters 70, 17–22 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chin, F.Y.L., Qian, J., Wang, C.A. (2004). Progress on Maximum Weight Triangulation. In: Chwa, KY., Munro, J.I.J. (eds) Computing and Combinatorics. COCOON 2004. Lecture Notes in Computer Science, vol 3106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27798-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-27798-9_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22856-1
Online ISBN: 978-3-540-27798-9
eBook Packages: Springer Book Archive