Abstract
The cyclic edge connectivity is the size of a smallest edge cut in a graph such that at least two of the connected components contain cycles. We present an algorithm running in time O(n 2log2 n) for computing the cyclic edge connectivity of n-vertex cubic graphs.
The REU programme where this research was originally started is supported by a cooperative research grant KONTAKT ME 521.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aldred, R.E.L., Holton, D.A., Jackson, B.: Uniform cyclic edge connectivity in cubic graphs. Combinatorica 11, 81–96 (1991)
Andersen, L.D., Fleischner, H., Jackson, B.: Removable edges in cyclically 4-edgeconnected cubic graphs. Graphs Comb. 4(1), 1–21 (1988)
Caret, R.L., Dennistion, K.J., Topping, J.J.: Principles and applications of inorganic, organic & biological chemistry. C. Brown Publishers, Boston (1997)
Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press, Boston (1990)
Fleischner, H., Jackson, B.: A note concerning some conjectures on cyclically 4-edge connected 3-regular graphs. Ann. Disc. Math. 41, 171–177 (1989)
Lou, D., Teng, L., Wu, X.: A polynomial algorithm for cyclic edge connectivity of cubic graphs. Australasian J. Comb. 24, 247–259 (2001)
Lou, D.: private communication
McCuaig, W.: Cycles through edges in cyclically k-connected cubic graphs. Discrete Math. 103 (1), 95–98 (1992)
McCuaig, W.: Edge reductions in cyclically k-connected cubic graphs. J. Comb. Theory Ser. B 56 (1), 16–44 (1992)
Nedela, R., Škoviera, M.: Atoms of cyclic connectivity in cubic graphs. Math. Slovace 45, 481–499 (1995)
Nedela, R., Škoviera, M.: Decompositions and reductions of snarks. J. Graph Theory 22, 253–279 (1996)
Peroche, B.: On Several Sorts of Connectivity. Discrete Mathematics 46, 267–277 (1983)
Plummer, M.D.: On the cyclic connectivity of planar graphs. In: Graph Theory and Applications, pp. 235–242. Springer, Heidelberg (1972)
Tait, P.G.: Remarks on the colouring of maps. Proc. Roy. Soc. Edingburg 10, 501–503 (1880)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dvořák, Z., Kára, J., Král’, D., Pangrác, O. (2004). An Algorithm for Cyclic Edge Connectivity of Cubic Graphs. In: Hagerup, T., Katajainen, J. (eds) Algorithm Theory - SWAT 2004. SWAT 2004. Lecture Notes in Computer Science, vol 3111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27810-8_21
Download citation
DOI: https://doi.org/10.1007/978-3-540-27810-8_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22339-9
Online ISBN: 978-3-540-27810-8
eBook Packages: Springer Book Archive