Collective Tree Spanners of Graphs

Feodor F. Dragan, Chenyu Yan, and Irina Lomonosov

Department of Computer Science, Kent State University, Kent, Ohio, USA
{dragan, cyan, ilomonos}@cs.kent.edu

Abstract. In this paper we introduce a new notion of collective tree
spanners. We say that a graph G = (V, E) admits a system of p col-
lective additive tree r-spanners if there is a system 7 (G) of at most p
spanning trees of G such that for any two vertices z,y of G a spanning
tree T' € T(G) exists such that dr(z,y) < de(z,y) + r. Among other
results, we show that any chordal graph, chordal bipartite graph or co-
comparability graph admits a system of at most log, n collective addi-
tive tree 2—spanners and any c-chordal graph admits a system of at most
log, n collective additive tree (2|c/2])-spanners. Towards establishing
these results, we present a general property for graphs, called (o, r)-
decomposition, and show that any («,r)-decomposable graph G with n
vertices admits a system of at most log, ,, n collective additive tree 2r—
spanners. We discuss also an application of the collective tree spanners
to the problem of designing compact and efficient routing schemes in
graphs.

1 Introduction

Many combinatorial and algorithmic problems are concerned with the distance
dg on the vertices of a possibly weighted graph G = (V| E). Approximating
de by a simpler distance (in particular, by tree-distance dr) is useful in many
areas such as communication networks, data analysis, motion planning, image
processing, network design, and phylogenetic analysis. An arbitrary metric space
(in particular a finite metric defined by a general graph) might not have enough
structure to exploit algorithmically. So, general goal is, for a given graph G,
to find a simpler graph H = (V| E’) with the same vertex—set, such that the
distance dp(u,v) in H between two vertices u,v € V' is reasonably close to the
corresponding distance dg(u,v) in the original graph G.

There are several ways to measure the quality of this approximation, two of
them leading to the notion of a spanner. For ¢ > 1, a spanning subgraph H of G
is called a multiplicative t—spanner of G [20019] if dp(u,v) < t - dg(u,v) for all
u,v € V.Ifr > 0 and dy (u,v) < dg(u,v)+r for all u,v € V, then H is called an
additive r—spanner of G [17]. The parameters t and r are called, respectively, the
multiplicative and the additive stretch factors. Clearly, every additive r-spanner
of G is a multiplicative (r + 1)-spanner of G (but not vice versa). Note that the
graphs considered in this paper are assumed to be unweighted.

T. Hagerup and J. Katajainen (Eds.): SWAT 2004, LNCS 3111, pp. 64-[Z6, 2004.
(© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Abbrechen
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Error
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

Collective Tree Spanners of Graphs 65

Graph spanners have applications in various areas; especially, in distributed
systems and communication networks. In [20], close relationships were estab-
lished between the quality of spanners (in terms of stretch factor and the num-
ber of spanner edges |E’|), and the time and communication complexities of any
synchronizer for the network based on this spanner. Unfortunately, the problem
of determining, for a given graph G and two integers t,m > 1, whether G has a
multiplicative t-spanner with m or fewer edges, is NP-complete (see [19]).

The sparsest spanners are tree spanners. As it was shown in [Ig], they can
be used as models for broadcast operations in communication networks. Tree
spanners are favored also from the algorithmic point of view - many algorithmic
problems are easily solvable on trees. Multiplicative tree t-spanners were studied
in [6]. It was shown that, for a given graph G, the problem to decide whether G
has a multiplicative tree t—spanner (the multiplicative tree t—spanner problem) is
N P—complete for any fixed ¢ > 4 and is linearly solvable for t = 1,2. Recently,
this N P—-completeness result was improved - the multiplicative tree t—spanner
problem is N P—complete for any fixed ¢ > 4 even on some rather restricted
graph classes: chordal graphs [3] and chordal bipartite graphs [4].

Many graph classes (including hypercubes, planar graphs, chordal graphs,
chordal bipartite graphs) do not admit any good tree spanner. For every fixed
integer t there are planar chordal graphs and planar chordal bipartite graphs
that do not admit tree t—spanners (additive as well as multiplicative) [S2T].
However, as it was shown in [I9], any chordal graph with n vertices admits a
multiplicative 5-spanner with at most 2n—2 edges and a multiplicative 3-spanner
with at most O(nlogn) edges (both spanners are constructable in polynomial
time). Recently, the results were further improved. In [8], the authors show that
every chordal graph admits an additive 4-spanner with at most 2n — 2 edges
and an additive 3-spanner with at most O(nlogn) edges. An additive 4-spanner
can be constructed in linear time while an additive 3-spanner is constructable in
O(mlogn) time, where m is the number of edges of G. Even more, the method
designed for chordal graph is extended to all c-chordal graphs. As a result, it
was shown that any such graph admits an additive (¢ + 1)-spanner with at most
2n — 2 edges which is constructable in O(cn 4+ m) time. Recall that a graph G
is chordal if its largest induced (chordless) cycles are of length 3 and c-chordal
if its largest induced cycles are of length c.

1.1 Our Results

In this paper we introduce a new notion of collective tree spanners, a notion
slightly weaker than the one of a tree spanner and slightly stronger than the
notion of a sparse spanner. We say that a graph G = (V, E) admits a system
of p collective additive tree r-spanners if there is a system 7 (G) of at most u
spanning trees of G such that for any two vertices z,y of G a spanning tree
T € T(G) exists such that dr(z,y) < dg(z,y) + r (a multiplicative variant
of this notion can be defined analogously). Clearly, if G admits a system of p
collective additive tree r-spanners, then G admits an additive r-spanner with at
most 4 X (n — 1) edges (take the union of all those trees), and if g = 1 then

66 F.F. Dragan, C. Yan, and I. Lomonosov

G admits an additive tree r-spanner. Note also that any graph on n vertices
admits a system of at most n — 1 collective additive tree 0-spanners (take n — 1
Breadth-First-Search—trees rooted at different vertices of G).

The introduction of this new notion was inspired by the work [1] of Bartal and
subsequent work [7]. For example, motivated by Bartal’s work on probabilistic
approximation of general metrics with tree metrics, [7] gives a polynomial time
algorithm that given a finite n point metric G, constructs O(nlogn) trees and a
probability distribution ¢ on them such that the expected multiplicative stretch
of any edge of G in a tree chosen according to 1 is at most O(lognloglogn).
These results led to approximation algorithms for a number of optimization
problems (see [T7] for more details).

In Section [we define a large class of graphs, called («,r)-decomposable,
and show that any («,r)-decomposable graph G with n vertices admits a sys-
tem of at most log, /, n collective additive tree 2r—spanners. Then, in Sections
Bl and [, we show that chordal graphs, chordal bipartite graphs and cocompa-
rability graphs are all (1/2, 1)-decomposable graphs, implying that each graph
from those families admits a system of at most logy n collective additive tree 2—-
spanners. These results are complemented by lower bounds, which say that any
system of collective additive tree 1-spanners must have £2(y/n) spanning trees
for some chordal graphs and (2(n) spanning trees for some chordal bipartite
graphs and some cocomparability graphs. Furthermore, we show that any c-
chordal graph is (1/2, |¢/2]|)-decomposable, implying that each c-chordal graph
admits a system of at most log, n collective additive tree (2|c¢/2])-spanners.

Thus, as a byproduct, we get that chordal graphs, chordal bipartite graphs
and cocomparability graphs admit additive 2-spanners with at most (n—1) log, n
edges and c-chordal graphs admit additive (2|¢/2])-spanners with at most (n —
1) logy n edges. Our result for chordal graphs improves the known results from
[19] and [B] on 3-spanners and answers the question posed in [8] whether chordal
graphs admit additive 2-spanners with O(nlogn) edges.

In section [f] we discuss an application of the collective tree spanners to the
problem of designing compact and efficient routing schemes in graphs. For any
graph on n vertices admitting a system of at most u collective additive tree
r—spanners, there is a routing scheme of deviation r with addresses and routing
tables of size O(ulog? n/ loglog n) bits per vertex (for details see Section [F). This
leads, for example, to a routing scheme of deviation (2|c¢/2]) with addresses and
routing tables of size O(log3 n/loglogn) bits per vertex on the class of c-chordal
graphs. The latter improves the recent result on routing on c-chordal graphs
obtained in [I3] (see also [12] for the case of chordal graphs). We conclude the
paper with Section Bl where we discuss some further developments and future
directions.

1.2 Basic Notions and Notations

All graphs occurring in this paper are connected, finite, undirected, loopless and
without multiple edges. In a graph G = (V, E) the length of a path from a vertex

Collective Tree Spanners of Graphs 67

v to a vertex u is the number of edges in the path. The distance dg(u, v) between
the vertices v and v is the length of a shortest path connecting v and v.

For a subset S C V| let radg(S) and diamg(S) be the radius and the diam-
eter, respectively, of S in G, i.e., radg(S) = min,cyv{maz,cs{dc(u,v)}} and
diama(S) = mazy ves{da(u,v)}. A vertex v € V such that dg(u, v) < radg(S)
for any u € S, is called a central vertex for S. The value radg (V) is called the
radius of G. Let also N(v) (N[v]) denote the open (closed) neighborhood of a
vertex v in G, i.e., N(v) ={u €V :uv € E(G)} and N[v] = N(v) U {v}.

2 (a,r)-Decomposable Graphs and Their Collective Tree
Spanners

Different balanced separators in graphs were used by many authors in designing
efficient graph algorithms. For example, bounded size balanced separators and
bounded diameter balanced separators were recently employed in [I6] for de-
signing compact distance labeling schemes for different so-called well-separated
families of graphs. We extend those ideas and apply them to our problem.

Let a be a positive real number smaller than 1 and r be a non-negative
integer. We say that an n-vertex graph G = (V, E) is (a, r)—decomposable if the
following three conditions hold for G:

Balanced Separator condition - there exists a set S C V of vertices in G whose
removal leaves no connected component with more than an vertices;

Bounded Separator-Radius condition - radg(S) < r, i.e., there exists a vertex
cin G (called a central vertex for S) such that dg(v,c) <r for any v € S;

Hereditary Family condition - each connected component of the graph, ob-
tained from G by removing vertices of S, is also an («,r)-decomposable
graph.

Note that, by definition, any graph of radius at most r is («,r)-decomposable.

Using the first and third conditions, one can construct for any («, r)-decom-
posable graph G a (rooted) balanced decomposition tree BT (G) as follows. If G is
of radius at most r, then BT (G) is a one node tree. Otherwise, find a balanced
separator S in GG, which exists according to the Balanced Separator condition.
Let G1,Ga,...,G, be the connected components of the graph G — S obtained
from G by removing vertices of S. For each graph G; (i = 1,...,p), which is
(a, r)—decomposable by the Hereditary Family condition, construct a balanced
decomposition tree BT (G;) recursively, and build BT (G) by taking S to be the
root and connecting the root of each tree BT (G;) as a child of S. See Figure
[for an illustration. Clearly, the nodes of BT (G) represent a partition of the
vertex set V of G into clusters S1,95,,...,85, of radius at most r each. For a
node X of BT (G), denote by G({X) the (connected) subgraph of G induced by
vertices [J{Y : Y is a descendent of X in BT (G)} (here we assume that X is a
descendent of itself).

It is easy to see that a balanced decomposition tree BT (G) of a graph G with
n vertices and m edges has depth at most log, ,, n, which is O(logan) if a is a

68 F.F. Dragan, C. Yan, and I. Lomonosov

$ G238
1@.11 19 X . 19

¢ ¢ 15 ¢ * 15
78 2 3 4 14
9 16 17 G% 6D e 16 17

(a) () (©

Fig.1. (a) A graph G, (b) its balanced decomposition tree B7 (G) and (c) an induced
subgraph G(}X) of G.

constant. Moreover, assuming that a balanced and bounded radius separator
can be found in polynomial, say p(n), time (for the special graph classes we
consider later, p(n) will be at most O(n?)), the tree BT (G) can be constructed
in O((p(n) +m)log, ;, n) total time. Indeed, in each level of recursion we need
to find balanced and bounded radius separators in current disjoint subgraphs
and to construct the corresponding subgraphs of the next level. Also, since the
graph sizes are reduced by a factor «, the recursion depth is at most log, , n.

Consider now two arbitrary vertices « and y of an (¢, r)—decomposable graph
G and let S(z) and S(y) be the nodes of BT (G) containing x and y, respec-
tively. Let also NC Ag7(c)(S(x), S(y)) be the nearest common ancestor of nodes
S(x) and S(y) in BT(G) and (Xg, X1,...,X;) be the path of BT (G) connect-
ing the root Xo of BT(G) with NCAgy()(S(x),S(y)) = X; (in other words,
Xo, X1, ..., X are the common ancestors of S(x) and S(y)). The following lem-
mata are crucial to all our subsequent results.

Lemma 1. Any path P,fy, connecting vertices x and y in G, contains a vertexr
from XoU X1 U---UXj;.

Let SPfy be a shortest path of G connecting vertices z and y, and let X;
be the node of the path (X, X1,...,X:) with the smallest index such that
SPY N X; # 0 in G. Then, the following lemma holds.

Y

Lemma 2. We have dg(z,y) = dg/(z,y), where G’ := G(1X;).

For the graph G’ = G(|.X;), consider its arbitrary Breadth-F'irst-Search—tree
(BFS-tree) T' rooted at a central vertex c¢ for X;, i.e., a vertex ¢ such that
dgr(v,¢) < r for any v € X;. Such a vertex exists in G’ since G’ is an (a,7)-
decomposable graph and X is its balanced and bounded radius separator. The
tree 7" has the following distance property with respect to those vertices x, y.

Lemma 3. We have dr/(z,y) < da(z,y) + 2r.

Let now Bj,..., B be the nodes on depth i of the tree BT(G). For each
subgraph G; = G(iB;) of G (i = 0,1,...,depth(BT(G)), j = 1,2,...,pi),

Collective Tree Spanners of Graphs 69

denote by T]? a BFS—tree of graph G; rooted at a central vertex cé for B; The
trees T; (i=0,1,...,depth(BT(Q)), j =1,2,...,p;) are called local subtrees of
G, and, given the balanced decomposition tree BT (G), they can be constructed
in O((t(n) + m)log, o, n) total time, where t(n) is the time needed to find a
central vertex cé for B; (a trivial upper bound for #(n) is O(n?)). From Lemma
Bl the following general result can be deduced.

Theorem 1. Let G be an (o, r)-decomposable graph, BT (G) be its balanced
decomposition tree and LT(G) = {T} : i = 0,1,...,depth(BT(G)), j =
1,2,...,p;} be its local subtrees. Then, for any two vertices x and y of G, there
exists a local subtree T;,/ in LT(G) such that dpi (z,y) < da(z,y) + 2r.

This theorem implies two important results for the class of («,r)-
decomposable graphs. Let G be an («, r)-decomposable graph with n vertices
and m edges, BT (G) be its balanced decomposition tree and L7 (G) be the
family of its local subtrees (defined above). Consider a graph H obtained by
taking the union of all local subtrees of G (by putting all them together), i.e.,
H = {T} : T} € LT(G)} = (V,U{E(T}) : T} € LT(G)}). Clearly, H is a
spanning subgraph of G, constructable in O((p(n) + t(n) + m)log; ,, n) total
time, and, for any two vertices x and y of G, dy(x,y) < dg(x,y) + 2r holds.
Also, since for every level i (i = 0,1,...,depth(BT(G))) of balanced decom-
position tree BT (G), the corresponding local subtrees T}, ... ,T;;i are pairwise
vertex-disjoint, their union has at most n — 1 edges. Therefore, H cannot have
more than (n — 1) log, /o™ edges in total. Thus, we have proven the following
result.

Theorem 2. Any («,r)—decomposable graph G with n vertices admits an addi-
tive 2r—spanner with at most (n —1)log, ;, n edges.

Instead of taking the union of all local subtrees of G, one can fix i (i €
{0,1,...,depth(BT(G))}) and consider separately the union of only local sub-
trees T4, ... ,Tzfi, corresponding to the level i of the decomposition tree BT (G),
and then extend in linear O(m) time that forest to a spanning tree 7% of G
(using, for example, a variant of the Kruskal’s Spanning Tree algorithm for the
unweighted graphs). We call this tree T the spanning tree of G corresponding
to the level i of the balanced decomposition BT (G). In this way we can obtain at
most log; /, 7 spanning trees for G, one for each level i of BT(G). Denote the
collection of those spanning trees by 7(G). By Theorem [I] it is rather straight-
forward to show that for any two vertices x and y of G, there exists a spanning
tree T¥ in T(G) such that dps (z,y) < de(z,y) + 2r. Thus, we have

Theorem 3. Any (a,r)-decomposable graph G with n vertices admits a system
T(G) of at most logy s n collective additive tree 2r-spanners.

Note that such a system 7 (G) for an (o, r)-decomposable graph G with n
vertices and m edges can be constructed in O((p(n) + t(n) +m)log, /, n) time,
where p(n) is the time needed to find a balanced and bounded radius separator
S and t(n) is the time needed to find a central vertex for S.

70 F.F. Dragan, C. Yan, and I. Lomonosov

3 Acyclic Hypergraphs, Chordal Graphs, and
(o, 7)-Decomposable Graphs

Let H = (V, &) be a hypergraph with the vertex set V' and the hyperedge set &,
i.e., € is a set of non-empty subsets of V. For every vertex v € V, let £(v) = {e €
€ :v € e}. The 2-section graph 2SEC(H) of a hypergraph H has V as its vertex
set and two distinct vertices are adjacent in 2SEC(H) if and only if they are
contained in a common hyperedge of H. A hypergraph H is called conformal if
every clique (a set of pairwise adjacent vertices) of 2§ EC(H) is contained in a
hyperedge e € £, and a hypergraph H is called acyclic if there is a tree T' with
node set € such that for all vertices v € V, £(v) induces a subtree T, of T. For
these and other hypergraph notions see [2].

The following theorem represents two well-known characterizations of acyclic
hypergraphs. Let C(G) be the set of all maximal (by inclusion) cliques of a
graph G = (V, E). The hypergraph (V,C(G)) is called the clique-hypergraph of
G. Recall that a graph G is chordal if it does not contain any induced cycles
of length greater than 3. A vertex v of a graph G is called simplicial if its
neighborhood N (v) form a clique in G.

Theorem 4. (see [A5]) Let H = (V, &) be a hypergraph. Then the following
conditions are equivalent:

(i) H is an acyclic hypergraph;
(i) H is conformal and 2SEC(H) of H is a chordal graph;
(iii) H is the clique hypergraph (V,C(G)) of some chordal graph G = (V, E).

Let now G = (V, E) be an arbitrary graph and r be a positive integer. We say
that G admits a radius v acyclic covering if there is a family S(G) = {51, ..., Sk}
of subsets of V' such that

(U’LlS_

1)
(2) for any edge xy of G there is a subset S; (i € {1,...,k}) with z,y € S;;
(3) H = (V,5(G)) is an acyclic hypergraph

(4) radg(S,)<rforeachz—1 k.

A class of graphs F is called hereditary if every induced subgraph of a graph
G belongs to F whenever G is in F. A class of graphs F is called (a,r)-
decomposable if every graph G from F is (o, r)—decomposable.

Theorem 5. Let F be a hereditary class of graphs such that any G € F admits
a radius v acyclic covering. Then F is a (1/2,r)—-decomposable class of graphs.

Since for a chordal graph G = (V, E) the clique hypergraph (V,C(G)) is
acyclic and chordal graphs form a hereditary class of graphs, from Theorem
and Theorems [2] and Bl we immediately conclude

Corollary 1. Any chordal graph G with n vertices and m edges admits an ad-
ditive 2—spanner with at most (n — 1)logyn edges, and such a sparse spanner
can be constructed in O(mlogyn) time.

Collective Tree Spanners of Graphs 71

Corollary 2. Any chordal graph G with n vertices and m edges admits a system
T(G) of at most logy n collective additive tree 2-spanners, and such a system of
spanning trees can be constructed in O(mlogyn) time.

Note that, since any additive r-spanner is a multiplicative (r + 1)-spanner,
Corollary [improves a known result of Peleg and Schéffer on sparse spanners
of chordal graphs. In [19], they proved that any chordal graph with n vertices
admits a multiplicative 3—spanner with at most O(nlog,n) edges and a multi-
plicative 5-spanner with at most 2n — 2 edges. Both spanners can be constructed
in polynomial time. Note also that their result on multiplicative 5-spanners was
earlier improved in [8], where the authors showed that any chordal graph with n
vertices admits an additive 4-spanner with at most 2n — 2 edges, constructable
in linear time. Motivated by this and Corollary [, it is natural to ask whether
a system of constant number of collective additive tree 4—spanners exists for a
chordal graph (or, generally, for which r, a system of constant number of col-
lective additive tree r—spanners exists for any chordal graph). Recall that the
problem whether a chordal graph admits a (one) multiplicative tree t-spanner is
NP-complete for any ¢t > 3 [3].

Peleg and Schéffer showed also in [19] that there are n-vertex chordal graphs
for which any multiplicative 2-spanner will need to have at least £2(n®/?) edges.
This result leads to the following observation on collective additive tree 1-
spanners of chordal graphs.

Observation 6. There are n-vertex chordal graphs for which any system of
collective additive tree 1-spanners will need to have at least £2(y/n) spanning
trees.

4 Collective Tree Spanners in c-Chordal Graphs

A graph G is c-chordal if it does not contain any induced cycles of length greater
than c. c-Chordal graphs naturally generalize the class of chordal graphs. Chordal
graphs are precisely the 3-chordal graphs.

Theorem 7. The class of c-chordal graphs is (1/2,|c/2])-decomposable.

A balanced separator of radius at most |¢/2] of a c-chordal graph G on n
vertices can be found in O(n3) time. Thus, from Theorems Zand B] we conclude

Corollary 3. Any c-chordal graph G with n wvertices admits an additive
(2|¢/2])—spanner with at most (n — 1)logy n edges, and such a sparse spanner
can be constructed in O(n®logyn) time.

Corollary 4. Any c-chordal graph G with n vertices admits a system T(G) of
at most logy n collective additive tree (2]c/2])—spanners, and such a system of
spanning trees can be constructed in O(n>logyn) time.

72 F.F. Dragan, C. Yan, and I. Lomonosov

Note that there are c-chordal graphs which do not admit any radius r acyclic
covering with r < |¢/2]. Consider, for example, the complement Cp of an induced
cycle C¢ = (a—b—c¢c—d—e— f—a), which is a 4-chordal graph. A family
S(Cs) consisting of one set {a, b, ¢, d, e, f} gives a trivial radius 2 = |4/2] acyclic
covering of Cg, and a simple consideration shows that no radius 1 acyclic covering
can exist for Cg (it is impossible, by simply adding new edges to Cg, to get a
chordal graph in which each maximal clique induces a radius one subgraph of
Cs).

Next we will show that yet an interesting subclass of 4-chordal graphs, namely
the class of chordal bipartite graphs, does admit radius 1 acyclic coverings. A
bipartite graph G = (X UY, E) is chordal bipartite if it does not contain any
induced cycles of length greater than 4.

For a chordal bipartite graph G, consider a hypergraph H = (X UY, {N[y] :
y € Y}). In full version we show that H is an acyclic hypergraph. Since chordal
bipartite graphs form a hereditary class of graphs and for any chordal bipartite
graph G = (X UY, E), a family {N[y] : y € Y} of subsets of X UY satisfies all
four conditions of radius 1 acyclic covering, by Theorem [5] we have

Theorem 8. The class of chordal bipartite graphs is (1/2,1)-decomposable.

Another interesting subclass of 4-chordal graphs is the class of cocompara-
bility graphs. It is well-known that cocomparability graphs contain all interval
graphs, all permutation graphs and all trapezoid graphs (see, e.g., [5] for the def-
initions). Since Cg is a cocomparability graph, cocomparability graphs generally
do not admit radius 1 acyclic coverings (although, we can show that both the
class of permutation graphs and the class of trapezoid graphs do admit radius
1 acyclic coverings [9]). In full version we present a very simple direct proof for
the statement that the class of cocomparability graphs is (1/2,1)-decomposable.

Theorem 9. The class of cocomparability graphs is (1/2,1)-decomposable.

Corollary 5. Any chordal bipartite graph or cocomparability graph G with n
vertices and m edges admits an additive 2—spanner with at most (n — 1)logyn
edges, and such a sparse spanner can be constructed in O(nmlogyn) time for
chordal bipartite graphs and in O(mlog, n) time for cocomparability graphs.

Corollary 6. Any chordal bipartite graph or cocomparability graph G with n
vertices and m edges admits a system T (G) of at most log,n collective addi-
tive tree 2—spanners, and such a system of spanning trees can be constructed
in O(nmlogyn) time for chordal bipartite graphs and in O(mlog,n) time for
cocomparability graphs.

Recall that the problem whether a chordal bipartite graph admits a (one)
multiplicative tree t-spanner is NP-complete for any ¢ > 3 [4]. Also, any chordal
bipartite graph G with n vertices admits an additive 4-spanner with at most
2n — 2 edges which is constructable in linear time []]. Again, it is interesting to

Collective Tree Spanners of Graphs 73

know whether a system of constant number of collective additive tree 4—spanners
exists for a chordal bipartite graph.

It is known [2I] that any cocomparability graph admits an (one) additive
tree 3-spanner. In a forthcoming paper [I1], using different technique, we show
that the result stated in Corollary B can further be improved. One can show
that any cocomparability graph admits a system of two collective additive tree
2-spanners and there are cocomparability graphs which do not have any (one)
additive tree 2-spanner.

We have the following observation on collective additive tree 1-spanners for
chordal bipartite graphs and cocomparability graphs.

Observation 10. There are chordal bipartite graphs and cocomparability graphs
on n vertices for which any system of collective additive tree 1-spanners will need
to have at least 2(n) spanning trees.

5 Collective Tree Spanners and Routing Labeling
Schemes

An important problem in large scale communication networks is the design of
routing schemes that produce efficient routes and have relatively low memory
requirements. Following [18], one can give the following formal definition. A
family R of graphs is said to have an l(n) routing labeling scheme if there is a
function L labeling the vertices of each n-vertex graph in R with distinct labels of
up to I(n) bits, and there exists an efficient algorithm, called the routing decision,
that given the label of a source vertex v and the label of the destination vertex
(the header of the packet), decides in time polynomial in the length of the given
labels and using only those two labels, whether this packet has already reached
its destination, and if not, to which neighbor of v to forward the packet. The
efficiency of a routing scheme is measured in terms of its multiplicative stretch,
called delay, (or additive stretch, called deviation), namely, the maximum ratio
(or surplus) between the length of a route, produced by the scheme for some
pair of vertices, and their distance. Thus, the goal is, for a family of graphs, to
find a routing labeling scheme with small stretch factor, relatively short labels
and fast routing decision.

To obtain routing schemes for general graphs that use o(n)-bit label for each
vertex, one has to abandon the requirement that packets are always routed on
shortest paths, and settle instead for the requirement that packets are routed on
paths with relatively small stretch. Recently, authors of [22] presented a routing
scheme that uses O(nl/ %) bits of memory at each vertex of an n-vertex graph
and has delay 3. Note that, each routing decision takes constant time in their
scheme, and the space is optimal, up to a logarithmic factor, in the sense that
every routing scheme with delay < 3 must use, on some graphs, routing labels
of total size 2(n?), and hence £2(n) at some vertex (see [15]).

In [14122], a shortest path routing labeling scheme for trees of arbitrary de-
gree and diameter is described that assigns each vertex of an m-vertex tree a
O(log® n/ loglog n)-bit label. Given the label of a source vertex and the label

74 F.F. Dragan, C. Yan, and I. Lomonosov

of a destination it is possible to compute, in constant time, the neighbor of the
source that heads in the direction of the destination. This result for trees was
recently used in [I2/T3] to design interesting low deviation routing schemes for
chordal graphs and general c-chordal graphs. [12] describes a routing labeling
scheme of deviation 2 with labels of size O(log® n/loglogn) bits per vertex and
O(1) routing decision for chordal graphs. [I3] describes a routing labeling scheme
of deviation 2|¢/2| with labels of size O(log® n) bits per vertex and O(loglogn)
routing decision for the class of c-chordal graphs.

Our collective additive tree spanners give much simpler and easier to under-
stand means of constructing compact and efficient routing labeling schemes for
all (a,r)-decomposable graphs. We simply reduce the original problem to the
problem on trees. The following result is true.

Theorem 11. Each (a,r)-decomposable graph with n vertices and m edges ad-
mits a routing labeling scheme of deviation 2r with addresses and routing ta-
bles of size O(log® n/loglogn) bits per vertex. Moreover, once computed by the
sender in logan time, headers never change, and the routing decision is made in
constant time per vertex.

Projecting this theorem to the particular graph classes considered in this
paper, we obtain the following result:

— Any c-chordal graph (resp., chordal, chordal bipartite or cocomparability
graph) admits a routing labeling scheme of deviation 2|c¢/2] (resp., of de-
viation 2) with addresses and routing tables of size O(log® n/loglogn) bits
per vertex. Moreover, once computed by the sender in logon time, headers
never change, and the routing decision is made in constant time per vertex.

6 Further Developments

In forthcoming papers [ITOJIT], we extend the method described in Section
and apply it to other families of graphs such as homogeneously orderable graphs,
AT-free graphs, graphs of bounded tree-width (including series-parallel graphs,
outerplanar graphs), graphs of bounded asteroidal number, and others. We show

— any homogeneously orderable graph admits a system of at most logy n col-
lective additive tree 2—spanners,

— any AT-free graph admits a system of two collective additive tree 2-spanners,

— any graph with bounded by a constant asteroidal number admits a system
of a constant number of collective additive tree 3—spanners,

— any graph of bounded by a constant tree-width admits a system of at most
O(logy) collective additive tree O—-spanners.

Note that, although the class of homogeneously orderable graphs is not heredi-
tary, our ideas still applicable.

We conclude this paper with two open questions:

Collective Tree Spanners of Graphs 75

1. What is the complexity of the problem ”Given a graph G and integers u,

r, decide whether G has a system of at most p collective additive tree r-
spanners” for different 4 > 1, » > 0 on general graphs and on different
restricted families of graphs?

2. What is the best trade-off between the number of trees p and the additive

stretch factor r on planar graphs? (So far, we can state only that any planar
graph admits a system of O(y/nlog, n) collective additive tree O-spanners.)

References

1.

2.
3.

10.

11.

12.

13.
14.

15.

Y. BARTAL, On approximating arbitrary metrices by tree metrics, Proceedings of
the 13th Annual ACM Symposium on Theory of Computing, pp. 161-168, 1998.
C. BERGE, Hypergraphs, North Holland, 1989.

A. BRANDSTADT, F.F. DRAGAN, H.-O. LE, and V.B. LE, Tree Spanners on
Chordal Graphs: Complexity, Algorithms, Open Problems, Proceedings of the 13th
International Symposium on Algorithms and Computation (ISAAC’02), November
2002, Springer, Lecture Notes in Computer Science 2518, pp. 163—174.

A. BRANDSTADT, F.F. DRAGAN, H.-O. LE, V.B. LE and R. UEHARA, Tree span-
ners for bipartite graphs and probe interval graphs, In Proceedings of the 29th
International Workshop ”Graph-Theoretic Concepts in Computer Science” (WG
’03), June 2003, Elspeet, the Netherlands, Springer, Lecture Notes in Computer
Science 2880, pp. 106-118.

. A. BRANDSTADT, V.B. LE and J. SPINRAD, Graph Classes: A Survey, SIAM,

Philadelphia, 1999.

L. Ca1 AND D.G. CORNEIL, Tree spanners, SIAM J. Disc. Math., 8 (1995), 359—
387.

M. CHARIKAR, C. CHEKURI, A. GOEL, S. GUHA, and S. PLOTKIN, Approximating
a Finite Metric by a Small Number of Tree Metrics, Proceedings of the 39th Annual
Symposium on Foundations of Computer Science, pp. 379-388, 1998.

V. D. Cueprol, F. F. DracGAN, and C. YAN, Additive Spanners for k-Chordal
Graphs, In Proceedings of the 5th Conference on Algorithms and Complezity (CIAC
2003), May 28-30, 2003, Rome, Italy, Springer, Lecture Notes in Computer Science
2653, pp. 96-107.

F.F. DrRAGAN and I. LoMmoNoOsOov, Compact and efficient routing schemes for
special graph classes, in preparation, 2004.

F.F. DrAGAN and C. YAN, Collective tree spanners of homogeneously orderable
graphs, in preparation, 2004.

F.F. DrAcaAN, C. YAN and D.G. CORNEIL, Collective tree spanners and routing
in AT-free related graphs, in preparation, 2004.

Y. DOURISBOURE and C. GAVOILLE, Improved Compact Routing Scheme for
Chordal Graphs, In proceedings of the 16th International Conference on Dis-
tributed Computing (DISC 2002), Toulouse, France, October 28-30, 2002, Lecture
Notes in Computer Science 2508, Springer, pp. 252-264.

Y. DOURISBOURE and C. GAVOILLE, Tree-length of graphs, manuscript, 2003.

P. FrAIGNIAUD and C. GAVOILLE, Routing in Trees, in Proc. 28th Int. Collo-
quium on Automata, Languages and Programming (ICALP 2001), Lecture Notes
in Computer Science 2076, 2001, pp. 757-772.

C. GAvoILLE and M. GENGLER, Space-efficiency of routing schemes of stretch
factor three, J. Parallel and Distr. Comput., 61 (2001), 679-687.

76

16.

17.

18.

19.

20.

21.

22.

F.F. Dragan, C. Yan, and I. Lomonosov

M. Karz, N.A. KATZ, and D. Peleg, Distance labeling schemes for well-separated
graph classes, in Proceedings of the 17th Annual Symposium on Theoretical Aspects
of Computer Science (STACS 2000), Lille, France, February 2000, Lecture Notes
in Computer Science 1770, Springer, 2000, pp. 516—-528.

A.L. LIESTMAN AND T. SHERMER, Additive graph spanners, Networks, 23 (1993),
343-364.

D. PELEG, Distributed Computing: A Locality-Sensitive Approach, STAM Mono-
graphs on Discrete Math. Appl., SIAM, Philadelphia, 2000.

D. PELEG, and A.A. SCHAFFER, Graph Spanners, J. Graph Theory, 13 (1989),
99-116.

D. PELEG AND J.D. ULLMAN, An optimal synchronizer for the hypercube, in Proc.
6th ACM Symposium on Principles of Distributed Computing, Vancouver, 1987,
77-85.

E. PRISNER, D. KrATSCH, H.-O. LE, H. MULLER, and D. WAGNER, Additive tree
spanners, SIAM Journal on Discrete Mathematics, 17 (2003), 332-340.

M. THORUP and U. Zwick, Compact routing schemes, in Proc. 13th Ann. ACM
Symp. on Par. Alg. and Arch. (SPAA 2001), ACM 2001, pp. 1-10.

	Introduction
	Our Results
	Basic Notions and Notations

	$(alpha ,r)$--Decomposable Graphs and Their Collective Tree Spanners
	Acyclic Hypergraphs, Chordal Graphs, and $(alpha ,r)$--Decomposable Graphs
	Collective Tree Spanners in c-Chordal Graphs
	Collective Tree Spanners and Routing Labeling Schemes
	Further Developments

