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Abstract. Sequential consistency is the archetypal correctness condition for the
memory protocols of shared-memory multiprocessors. Typically, such protocols
are parameterized by the number of processors, the number of addresses, and the
number of distinguishable data values, and typically, automatic protocol verifica-
tion analyzes only concrete instances of the protocol with small values (generally
< 3) for the protocol parameters. This paper presents a fully automatic method for
proving the sequential consistency of an entire parameterized family of protocols,
with the number of processors fixed, but the number of addresses and data val-
ues being unbounded parameters. Using some practical, reasonable assumptions
(data independence, processor symmetry, location symmetry, simple store order-
ing, some syntactic restrictions), the method automatically generates a finite-state
abstract protocol from the parameterized protocol description; proving sequential
consistency of the abstract model, via known methods, guarantees sequential con-
sistency of the entire protocol family. The method is sound, but incomplete, but
we argue that it is likely to apply to most real protocols. We present experimental
results showing the effectiveness of our method on parameterized versions of the
Piranha shared memory protocol and an extended version of a directory protocol
from the University of Wisconsin Multifacet Project.

1 Introduction

Shared-memory multiprocessors are the dominant form of multiprocessing. In such sys-
tems, the processors share a single address space and interact by reading/writing to a
shared memory system. A memory model is the correctness condition for the memory
system, defining the processor-visible behavior of the system.

Sequential Consistency (SC) [20] is the archetypal memory model. Informally, SC
states that every execution of the system must behave as if it were some interleav-
ing of the individual processors’ executions on a single atomic memory. For example,
Fig. 1 shows an execution that is not sequentially consistent, because there is no way
to interleave the executions of the two processors on a single memory and obtain the
observed results. SC continues to be important both from a verification perspective
as a well-defined and extensively-researched challenge problem, as well as from an
implementation perspective as a memory model balancing ease-of-programming with
implementation flexibility [17].
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proc1 : (write addr2 val1), (write addr1 val2), (read addr2 val1), (read addr2 val2)
proc2 : (write addr1 val1), (write addr2 val2), (read addr1 val1), (read addr1 val2)

Fig. 1. Example execution that is not sequentially consistent. The values seen by the two reads on
one processor imply that the other processor’s second write appears to have occurred between the
two reads; no interleaving can satisfy this property for both processors simultaneously. Note that
the operations on each address, considered in isolation, are sequentially consistent, demonstrating
that sequential consistency cannot be verified on a per-address basis. (In fact, the per-address
operations satisfy the even stronger notion of simple sequential consistency, defined in Sec. 2.).

Memory systems use intricate finite-state protocols to implement the desired mem-
ory model. These protocols are notoriously complex and error-prone, because the pri-
mary objective is performance rather than simplicity. With the ascendance of finite-state
model checking [9] as an automatic verification method, the verification of multiproces-
sor memory system protocols has been a major success story of the practical application
of formal verification.

Finite-state model checking is limited, of course, to finite-state systems. In real-
ity, memory system protocols are defined as parameterized systems — typically by
the number of processors, the number of addresses, and the number of distinguishable
data values. Most automatic protocol verification efforts have therefore considered only
concrete instances of protocols. Furthermore, because of problems with state-space ex-
plosion, the instances verified are generally very small, e.g., for a detailed model of a
typical industrial protocol, a successful model-checking run with 3 processors, 3 ad-
dresses, and 3 data values is a remarkable achievement. Far better would be a method
to automatically verify an entire parameterized protocol family.

In theory, handling a parameterized number of processors is most interesting, be-
cause shared memory protocols are intended to facilitate complex interactions among
processors. In practice, however, handling parameterized numbers of addresses and data
values is a higher priority, because real shared-memory multiprocessors have few pro-
cessors and many addresses and data values. For example, typical configurations have
2 to 8 processors, with even the largest installations having at most a few dozen pro-
cessors. In contrast, even the smallest and most common configurations (e.g., a hyper-
threading desktop PC) have at least 232 data values and hundreds of millions of physical
addresses (with much larger virtual address spaces) — far beyond the reach of the direct
application of model checking for the foreseeable future.

This paper presents a fully automatic method for proving the sequential consistency
of an infinite family of protocols parameterized in two dimensions: the number of ad-
dresses, and the number of data values. We consider the number of processors to be a
fixed constant. Our approach relies on data independence to handle the parameterized
data values; our main contribution is a means to handle parameterized addresses. Note
that unlike easier-to-verify properties like seriality or linearizability [16], sequential
consistency cannot be verified on a per-address basis. (See Fig. 1.) No previous fully
automatable method for verifying sequential consistency can be parameterized by both
the number of addresses and the number of data values. (See Sec. 7 for related work.)

Our method leverages a few common, practical assumptions about memory system
protocols. Three of these — data independence, processor symmetry, and location sym-
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metry — are standard and easily enforced syntactically. We impose some additional
syntactic constraints to simplify the automatic generation of a finite-state abstract pro-
tocol from the parameterized protocol description; these are described in Sec. 4. Finally,
our method verifies a slightly stronger form of SC in which writes to an address cannot
be reordered. To our knowledge, all implemented SC protocols implement this stronger
form. (The canonical example of a protocol that is SC, but violates this assumption is
Lazy Caching [1].) With these restrictions, our method is, in principle, fully automatic.

2 Preliminaries

A labelled transition system (LTS) is a tuple M = (S,Σ, I,−→), where S is a set of
states, Σ is a finite alphabet, I ⊆ S is the set of initial states, and −→⊆ S×Σ×S is the
transition relation. The language L(M) of the LTS M is the subset of Σ∗ defined in the
usual way. Given an alphabet Σ and some string x, define x↑Σ to be the string obtained
by deleting all symbols of x that are not in Σ. We extend ↑ to act on sets of strings in
the obvious way.

Denote by N the set of positive integers, and by Nn the set {1, . . . ,n}. For sets P, A,
and V , let MemEvents(P,A,V ) be the set {R,W}×P×A×V .Then MemEvents(N,N,N)
is called the set of memory events, also denoted simply MemEvents. An occurrence
of memory event (R, p, j,d) is meant to represent processor p reading value d from
address j, we call such an event a read. Similarly the write event (W, p, j,d) indicates
processor p writing value d to address j. We call a finite string over MemEvents a
trace. A shared memory protocol, hereafter simply protocol, is formalized as a LTS
P = (S,MemEvents(Nn,Nm,Nv)∪E, I,−→) for some n,m,v ≥ 1, where S is finite and
E (the silent action labels) is disjoint from MemEvents. The quantities n, m, and v are
respectively denoted Procs(P ), Addrs(P ), and Vals(P ). Intuitively, these quantities are
respectively the number of processors, number of memory addresses, and number of
data values (per address) processed by the protocol. We define PROTS to be the set of
all protocols. For a protocol P , define traces(P ) to be L(P )↑MemEvents.

We aim to verify correctness of an infinite set of related protocols called a protocol
family, defined as follows. For fixed n ≥ 1, an n-processor family is a function F :
N×N → PROTS where for all m,v ≥ 1, Procs(F(m,v)) = n, Addrs(F(m,v)) = m, and
Vals(F(m,v)) = v.

A trace is said to be serial if every read event has the same value as the last write
to the same address, and such a write always exists1. A trace σ is said to be sequen-
tially consistent (SC) iff there exists a trace σ′ (of the same length) such that (1)
σ′ ↑MemEvents({p} ,N,N) = σ ↑MemEvents({p} ,N,N) for each p ≥ 1, and (2) σ′
is serial. We call such a σ′ a serial reordering of σ. Furthermore, σ is said to be simple
SC (SSC) if there exists σ′ with the above two properties plus the additional property
(3) σ′ ↑({W}×N ×{ j}×N) = σ ↑({W}×N ×{ j}×N) for each j ≥ 1; here σ′ is
called a simple serial reordering. Intuitively, SC says that there must exist a reordering
that is serial and preserves the per-processor order. SSC adds the requirement that the
ordering of writes to each address is also preserved in the reordering. A protocol is said

1 The last write to the same address is the rightmost write that is left of the read in question and
has the same address, if the trace were written out from left to right as usual.
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to be serial, SSC, or SC, if all of its traces are serial, SSC, or SC respectively. Similarly,
an n-processor family is said to have any of these properties if all of its constituent
protocols have the respective property.

3 The Big Picture

Our aspiration is to algorithmically verify that an n-processor family F is SSC. This
section presents Theorem 1, which allows us to soundly reduce the proof that F is SSC
to checking SSC of a protocol Q, where Addrs(Q) = Procs(Q) = n, and Vals(Q) = 3,
provided that an infinite number of projected trace containments hold between certain
members of F and Q (see condition 2 of Theorem 1). However, in Sec. 5 we show that
if F is expressed in a certain formalism, then we can effectively produce a Q for which
these containments hold “by construction”. SSC of Q can be checked algorithmically
using known methods based on model-checking [10, 29, 8, 7].

In Sec. 3.1 we define three assumptions that are required by Theorem 1; the theorem
itself is presented in Sec. 3.2.

3.1 Assumptions

Here we define three common protocol assumptions: location symmetry (LS), processor
symmetry (PS), and data independence (DI).

For a permutation λ on N define λproc to be the function on MemEvents(n,m,v)
specified by λproc((op, p, j,d)) = (op,λ(p), j,d). Similarly, define λaddr((op, p, j,d)) =
(op, p,λ( j),d). We extend λproc and λaddr to have domain and range MemEvents∗ in
the obvious way. A protocol P is location symmetric (LS) if for every permutation λ :
NAddrs(P ) →NAddrs(P ) we have σ∈ traces(P ) implies λaddr(σ)∈ traces(P ). Similarly, P
is processor symmetric (PS) if for every permutation λ : NProcs(P ) → NProcs(P ) we have
σ ∈ traces(P ) implies λproc(σ) ∈ traces(P ). A family is said to be location symmetric
or processor symmetric if all protocols in its image have the respective property.

Intuitively, data independence (DI) in a system means that variables of a certain
type can only be nondeterministically assigned, copied, and outputted [32]. When the
system is a protocol, and the type is data values, one can define how DI manifests at
the trace level. Qadeer [29] gives the following trace level definition of DI. A trace is
called unambiguous if it has the feature that no two writes to the same address write
the same value. Given m,v,v′ ≥ 1, we call a function λ : Nm ×Nv′ → Nv a renaming
function, and define λval((op, p, j,d)) = (op, p, j,λ( j,d)). We extend λval to traces in
the obvious way. Then an n-processor family F is said to be DI if for all m,v ≥ 1 and
traces σ, we have σ∈ traces(F(m,v)) if and only if there is v′ ≥ 1, an unambiguous trace
σ′ ∈ traces(F(m,v′)), and a renaming function λ : Nm×Nv′ →Nv such that σ = λval(σ′).

3.2 Reduction to Finite-State SSC

Theorem 1. Let F be an n-processor family that is processor symmetric, location sym-
metric, and data independent. If there exists a protocol Q such that

1. Q is SSC, and
2. For all m > n we have that traces(F(m,3))↑MemEvents(Nn,Nn,N3) ⊆ traces(Q)

then F(m,v) is SSC for all v ≥ 1 and m > n.
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Proof: The detailed proof is available from:
http://www.cs.ubc.ca/∼jbingham/bchqz04-proofs.pdf

The proof relies on machinery developed in [29] to show that, under the LS, PS, and DI
assumptions, if there exists σ ∈ traces(F(m,v)) such that σ is not SSC, we can detect
that σ is not SSC by considering only σ ↑MemEvents(Nn,A,Nv), where A ⊂ N has
cardinality n. By exploiting the symmetry assumptions, we can ensure that such a σ
exists for which A = Nn. Furthermore, we can ensure such a σ exists using only 3 data
values. Hence, if Q is SSC, and the projected traces of all family members are contained
in traces(Q), then all family members must be SSC. �

We note that Theorem 1 does not allow concluding that F(m,v) is SSC for 1 ≤
m ≤ n. This is not a deficiency, since we may verify correctness of these members via
a finite number of model checks. Practically, these are the uninteresting cases, since
multiprocessors always have many more addresses than processors.

Suppose we are given F and wish to determine if a candidate protocol Q exists for
which the two conditions of Theorem 1 hold. Our approach involves automatically con-
structing a candidate Q such that condition 2 is guaranteed to hold; this construction
involves abstracting F in some sense. The automatic construction of Q is possible be-
cause of the formalism we use to describe F, presented in Sec. 4. Condition 1 is then
checked algorithmically using known methods. If this check is successful, the conclu-
sion of Theorem 1 follows. Otherwise, the approach has failed, and we can draw no
conclusions; in other words the approach is sound but incomplete. Hence, to argue for
the applicability of this approach, one must argue that real protocol families

1. adhere to the LS, PS, and DI assumptions, and
2. can be expressed in our formalism of Sec. 4, and
3. won’t yield false negatives, i.e. if the family is SSC then the approach succeeds.

It is widely accepted that real protocols satisfy property 1 [29]. Our formalism of Sec. 4
is quite general, encompassing all real protocols that we have encountered. For instance,
all of the protocols [1, 5, 22, 6, 19, 14] are expressible in our formalism. In support of
item 3, we present successful experiments on two challenging protocols in Sec. 6.

4 A Protocol Description Formalism

To describe an automatic construction of a candidate finite-state protocol Q from a pa-
rameterized protocol description, we must choose some sort of protocol description
formalism. Here, we will assume that the n-processor family F is expressible in a very
general syntax based on first order logic that is inspired by the bounded-data parame-
terized systems of [27]. We have tuned our formalism to provide enough expressiveness
for the real protocol descriptions we have encountered, while still allowing the efficient
and automatic generation of a sufficiently finely abstracted protocol Q. For the sake of
perspicuity, we will treat the number of data values as being fixed at 3, since condition
2 of Theorem 1 considers such family members. Standard restrictions can be imposed
on our formalism to ensure that the family is PS, LS, and DI. For instance, DI can easily
be enforced by syntactic constraints as observed by Wolper and others [32, 25, 29], and
symmetric types such as Murϕ scalarsets [18] can be used to ensure PS. LS is inherent
to the syntax [27].
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4.1 Syntax

We assume three sets of variables X =
{

x1, . . . ,x|X |
}

, Y =
{

y1, . . . ,y|Y |
}

, and Z ={
z1, . . . ,z|Z|

}
. For a set D, let Z[D] denote the variable set {zi[d] | 1 ≤ i ≤ |Z| ∧d ∈ D}

and let Vars(D) = X ∪Y ∪Z[D]. Priming any of these sets has the effect of priming all
constituent variables; semantically, primed variables will represent the next state. The
variables of X are Booleans, while the variables in Z are arrays of Booleans indexed
by addresses. The variables of Y will range over addresses, hence we call these vari-
ables address ranged variables (ARVs). Of course non-Boolean finite types and arrays
of such can be encoded in this framework. In shared memory protocols, typical (though
by no means exhaustive) examples of the variables in X , Y , and Z, are respectively fields
corresponding to processor IDs or message types in messages, fields storing addresses
in messages, and the permission bits and data value associated with each address in a
local cache or main memory.

We will employ auxiliary ARVs a and a1 to quantify over, and let ARVars denote
the set Y ∪Y ′ ∪ {a,a1}. Define quantifier-free actions (QFA) as formulas with syntax:

Φ ::= x | z[a] | z[a1] | 〈α = β〉 | ¬Φ | (Φ∨Φ) | (Φ∧Φ)

where x ∈ X ∪ X ′, z ∈ Z ∪ Z′ and α,β ∈ ARVars. For QFA φ, we write φ(a) (resp.
φ(a,a1)) to emphasize that the set of auxiliary ARVs appearing in φ is a subset of {a}
(resp. subset of {a,a1}). We call upon a set of action labels Labels, of which we require
({R,W}×Nn ×N3) ⊆ Labels. The transition relation of F must be expressible as a set:

{r�(a) | � ∈ Labels}
where, for each � ∈ Labels, r� is a formula of the form

r�(a) = φ�(a)∧∀a1 : ψ�(a,a1). (1)

Here, φ�(a) and ψ�(a,a1) are arbitrary QFAs and we call formulas of the form (1)
restricted actions. The initial state predicate Init must be of the form:

Init = ∀a : init(a)

for some QFA init(a) that does not contain any primed variables.
Intuitively, a transition in a protocol expressed in our formalism must satisfy r�(a)

for some � and some “distinguished” address a. φ�(a) dictates what happens to state
related to address a, i.e. ath entries of arrays, while the conjunct ∀a1 : ψ�(a,a1) dictates
the uniform effect on all other addresses. This restriction accords exactly with what we
have observed in real protocol descriptions. We find that real protocol transitions have
the property that ARVs are referenced and/or modified at no more than a single index
a, with the exception that some more complex transitions will also modify entries at
all other indices in some homogeneous way, hence the inclusion of ∀a1 : ψ�(a,a1) in
restricted actions. Usually, ψ�(a,a1) will simply state that if ¬〈a = a1〉, then the a1th
entries of arrays are left fixed. However, several transitions in one of the protocols we
experimented with have a more involved ψ�, e.g., a state change for one address forces
all other addresses to abandon an optimization mode. A theoretical limitation of our
formalism is that the auxiliary ARVs a and a1 are the only ARVs that can be used to
index into arrays. However, typical instances of indexing using another ARV y ∈ Y can
be performed by, for example, 〈y = a〉∧ some array′[a].
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4.2 Semantics

In this section we formally define the set of LTSs represented by our family syntax.
Let s be a valuation of the variables Vars(D) such that variables of X and Z[D] are

assigned Boolean values, and variables of Y are assigned values of some type R, and let
s′ be a valuation to Vars(D)′ with analogous typing. Then we call s a D,R-valuation and
(s,s′) a D,R-valuation pair, respectively. Intuitively, D is the index set for the arrays in
Z, and R is the type of the variables in Y ; for the protocols of F these will be the same,
but in Sec. 5 we construct a protocol for which they differ. For D,R-valuation pair (s,s′)
and restricted action θ(a), we write (s,s′) �m θ( j) if θ[ j/a] is satisfied when variables
are valuated by (s,s′), and quantified ARVs are taken to range over Nm. If θ is a QFA,
we may omit the subscript on �.

For each m ≥ 1, our syntax defines a LTS F(m,3) = (S,L, I,−→) where

– S is the set of all Nm,Nm-valuations
– L = Labels×Nm. In a slight abuse, we will identify the memory event (op, p, j,v) ∈

MemEvents with ((op, p,v), j) ∈ L.
– I = {s | s �m Init}
– −→ is the set of all tuples (s,(�, j),s′) such that (s,s′) �m r�( j) and j ∈ Nm.

5 A Candidate Q

Here we define a candidate Q for Theorem 1, which can be viewed as a modified version
of F(n,3); hereafter Q will refer to such. These modifications involve syntactic transfor-
mations; the transition relation and initial state assertion can easily be realized automat-
ically given {r� | � ∈ Labels} and Init. Intuitively, the modified protocol is a finite-state
abstraction of the protocols in F(n,3), where everything related to addresses greater
than n has been conservatively abstracted away. Note, however, that our abstraction is a
finer abstraction than the typical abstract interpretation [11] in which addresses greater
than n are replaced by an information-destroying � value that propagates throughout
the interpretation. We need our more accurate abstraction to successfully verify real
protocols.

In Q, address-ranged variables have type Nn ∪ {ξ}. The ξ symbol represents ad-
dresses in N \Nn. Counter-intuitively, the arrays in Z will still be indexed by Nn be-
cause the variables of Z[{ξ}] are existentially quantified out; for brevity we will let
⇀
z [ξ] denote the variable list z1[ξ], . . . ,z|Z|[ξ],z′1[ξ], . . . ,z′|Z|[ξ] throughout the paper. An
important part of the transformation is the operator sub(·). For any action r, the action
sub(r) is obtained by performing the following substitution: each occurrence of 〈α = β〉
falling under an odd number of negations (where α,β ∈ ARVars) is replaced with2

(〈α = β〉∧¬(〈α = ξ〉∧ 〈β = ξ〉))
2 This syntactic substitution gives the same effect on the transition relation as the usual abstract

interpretation with ξ conservatively abstracting the values greater than n. (The existential quan-
tification of the Z variables is the key difference between our abstraction and the typical one.)
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For restricted action θ(a) and integer j ∈ Nn ∪{ξ}, we write (s,s′) �Q θ( j) if θ[ j/a] is
satisfied when variables are assigned by (s,s′), and the universal quantifier in θ is taken
to range over Nn ∪{ξ}.

We now define Q = (SQ,LQ, IQ,−→Q):

– SQ is the set of all Nn,(Nn ∪{ξ})-valuations.
– LQ = Labels× (Nn ∪{ξ}). We note that labels of the form ((o, p,v),ξ) are not in

MemEvents.
– IQ =

{
s | s �Q ∃ ⇀

z[ξ] : sub(Init)
}

. The existential quantification notation ∃z : f

where z is a Boolean variable and f is a formula is simply syntactic sugar for
f [tt/z]∨ f [ff/z].

– −→Q is the set of all triples (s,(�, j),s′) such that j ∈ Nn ∪{ξ} and

(s,s′) �Q ∃ ⇀
z[ξ] : sub(r�( j)) (2)

The existential Boolean quantification in (2) blows up the formula by a factor of
22|Z| in the worst case. However, in practice we find that only a small number of the
variables

⇀
z[ξ] are actually mentioned in r�, which mitigates this effect. For example, the

only dependencies on
⇀
z[ξ] might be the 2 or 3 bits representing the access permissions

at the ξth entry of a single processor’s cache.
We conclude this section by asserting that the trace set of Q overapproximates that

of F(m,3) for all m > n, i.e. Q satisfies condition 2 of Theorem 1.

Theorem 2. traces(F(m,3))↑MemEvents(Nn,Nn,N3) ⊆ traces(Q) for all m > n.

Proof: The detailed proof is available from:
http://www.cs.ubc.ca/∼jbingham/bchqz04-proofs.pdf

The construction of Q naturally corresponds to an abstraction function mapping con-
crete states from F(m,3) to abstract states in Q. This mapping turns out to be a weak
simulation relation, and the projected trace containment follows. �

6 Experimental Results

To evaluate our technique, we experimented with two protocols, which we call PIR and
DIR. Both of these protocols are SSC but not serial, hence trace reordering requirements
are nontrivial. PIR is a simplified abstraction of the Piranha protocol [5]. Our imple-
mentation is consistent with the details of the simplification presented in [29]. DIR is a
simplification of a directory based protocol with Scheurich’s optimization [30]. Our im-
plementation is based on, but is simpler than, the description of Braun et al. [8], which
was obtained from the University of Wisconsin Multifacet group. We explain part of
the design of both protocols here and describe the ways in which our implementation
of DIR is simpler than the description of Braun et al. [8].

In both PIR and DIR, each processor p has a cache that contains, for certain mem-
ory locations j, a data value d(p, j) and an access permission access(p, j). The permis-
sion may be modifiable (M), shared (S), or invalid (I). Processor p may read the data



Automatic Verification of Sequential Consistency 435

value for location j if access(p, j) is S or M, and may write (change) the data value if
access(p, j) is M.

In PIR, in addition to the caches, the system state has a queue per processor and an
owner per memory location. The state maintains the invariant that the owner of location
j is either some processor p for which access(p, j) = S or M, or the owner is null.
Requests of a processor to change its access level or to get a data value for a location are
not modeled explicitly. Rather, if owner( j) = p, in one transition (step) of the protocol
the triple (d(p, j), j,X) may be placed on the queue of any processor p′ �= p, in which
case an invalidate message (INV, j) is placed on the queues of any processor p′′ (other
than p and p′) with access(p′′, j) �= I. Also, owner( j) is set to null and access(p, j) is
set to INV. In a later transition, when triple (d, j,X) is at the head of p′’s queue, the
triple may be removed from the queue, in which case d(p′, j) is set to d, access(p′, j) is
set to M, and owner( j) is set to p′. Also, if (INV, j) is at the head of the queue of p′′, in
one transition the message may be removed from the head of the queue, in which case
access(p′′, j) is set to I. Other access permission changes are modeled similarly.

The state space of PIR is relatively small because requests of processors are not
modeled explicitly, and moreover, no directory is used to store the set of processors
with shared access to a memory location. However, the use of queues ensures that the
traces generated by PIR are interesting and realistic, in the sense that if in some trace,
the lth event σl is a read to location j which inherits its value from an earlier write
event σk, then arbitrarily many operations (indeed, arbitrarily many write operations to
location j) may separate σk from σl in the trace.

The DIR protocol contains many low level details that are not modeled by PIR. In
DIR, a directory maintains information on which processors have exclusive or shared
access to a memory location. Each processor and the directory has both a request and
a response input queue, with different uses. For example, invalidate messages to pro-
cessors are placed on the request input queue, whereas messages containing data values
are placed on the response input queue.

In order to get exclusive access to a memory location, processor p sends a request
to the directory, which arranges for the data value and the number of current sharers
of the location to be sent to p. Before reading the data value, p must wait to receive
acknowledgement messages from each current sharer. Because of the multiple queues,
several race conditions can arise. For example, the directory might authorize processor
p′ to have exclusive access to location j after p, and p may receive a request to send
j’s data value to p′ before p has even received the data value itself. As a result, a
processor has 9 permission levels per location in its cache in addition to the I,S, and
M levels. For example, access(p, j) may be IMS, indicating that p requested M access
when access(p, j) was I, p has not yet transitioned to M access, but already another
request for p to downgrade to S access has been received.

To keep the state space within manageable proportions, our implementation of the
DIR protocol does not model a certain queue of Braun et al. [8]. This queue is used for
transmission of data within a processor, rather than between processors, and its removal
does not significantly change the protocol.

Both PIR and DIR were modeled at a fairly detailed level, resulting in substantial
descriptions in the Murϕ language (165 and 1397 lines of code, respectively, excluding
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comments). The Murϕ language is more expressive than the formalism of Sec. 4, but
the protocol family implementations used only constructs that conform to this formal-
ism. Although the construction in Sec. 4 is obviously automatable, we do not yet have
an implementation for the Murϕ language, so we performed the construction by hand,
exactly following the described syntactic transformations.

In addition, for the DIR protocol, the verification runs against the “automatically”-
generated Q spaced out, so the protocol was manually abstracted further, yielding Q′;
the numbers in Table 1 refer to the completed verification runs against Q′. The essential
difference between Q and Q′ is that in the latter, all fields (except for the address field)
in messages pertaining to the abstracted address ξ were abstracted. The same approach
was taken with a local record at each processor called the transaction buffer. Since Q′ is
an over-approximation of Q, the fact that the verification succeeded for Q′ proves that
verification would have succeeded for Q, had we had sufficient memory resources. In
other words, our automatic construction of Q was accurate enough to prove SSC of the
protocol family. In general, one could envision a tool that automatically attempts such
additional abstractions if model checking the original Q is intractable.

Table 1 gives our experimental results. The 2-processor runs were successful, show-
ing that our generated abstraction is accurate enough, even for these protocols with non-
trivial reordering properties (which are therefore hard-to-prove sequentially consistent).

Table 1. Results for the PIR (Piranha) and DIR (Wisconsin Directory) Protocols. All runs are with
the number of processors n = 2, except for PIR3 with n = 3. We experimented with two versions
of PIR: with processors’ queue depth q = 1 and q = 2. We use a method of Qadeer [29] to prove
SSC of our generated finite-state abstract protocol. This method requires separate model-checking
runs for each k = 1, . . . ,n, to check for cycles of length 2k in a graph of ordering constraints. Times
are in seconds, on a 2Ghz Intel Xeon with 4GB memory running Linux. “prob” is an upper-bound
on the probability of missing states due to hash compaction, as reported by Murϕ [31] (40 bit
hashes for PIR; 42 bits for DIR). The n = 2 runs concluded successfully, enabling us to conclude
SSC for each example over all address counts m and data value counts v where m > n = 2. The
PIR3 results are a preliminary attempt with n = 3 processors. For PIR3 with k = 2, we used 35-bit
hashes. We have not yet completed a k = 3 run at press time.

Protocol k = 1 k = 2
#states time depth prob #states time depth prob

PIR (q = 1) 49365 7 18 ≈ 0 138621 9 20 ≈ 0
PIR (q = 2) 3782880 100 21 ≈ 0 10558306 278 23 ≈ 0
PIR3(q = 1) 125865495 9244 36 ≤ 0.000024 374557312 25640 38 ≤ 0.021101
DIR (q = 1) 171088424 49660 53 ≤ 0.000013 375967684 110211 59 ≤ 0.000324

7 Related Work

There is a rich and successful literature pertaining to the verification of assorted safety
and liveness properties on non-parameterized protocols, which we do not have space to
summarize. We focus here on work pertaining to verification of SC for parameterized
families of protocols. The problem of determining whether a finite state protocol is SC
is undecidable [2], and so clearly also is the problem of determining whether a family
of parameterized protocols is SC. Therefore, all methods are necessarily incomplete.
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Some works verify weaker properties than sequential consistency, over parameter-
ized memory protocols. For example, McMillan [23] uses compositional model check-
ing to generate invariants that can be used to verify safety and liveness properties of the
FLASH cache coherence protocol. Pong and Dubois [28], Delzanno [12], and Emerson
and Kahlon [13] have produced automatic methods to verify safety properties over pa-
rameterized memory protocols, but these methods model the protocols at a very high
level of abstraction, where implementation details are hidden. Pnueli et al. [27] and
Arons et al. [4] present a general, sound-but-incomplete method for verifying param-
eterized systems. This work is similar in spirit to ours (and inspired our specification
formalism) in that an incomplete procedure is used to guess a candidate, whose verifica-
tion proves the property for the entire family. Their method, however, attempts to derive
an inductive invariant for proving simple assertions, whereas ours derives an abstract
protocol that preserves violations of SSC. All of these works can handle protocol fami-
lies with parameterized number of processors, which we cannot. On the other hand, our
method proves SSC rather than weaker safety properties, and applies to any protocol
that can be expressed in the syntax of Sec. 4.

Several proofs of SC for parameterized protocols are manual in nature. Some [21,
26, 3] use theorem-provers, while others use formal frameworks to provide a rigorous
proof [24]. In either case, a human must develop insights needed to build up the proof,
and the process is quite time-consuming.

Qadeer’s method [29] for verifying sequential consistency of finite-state cache co-
herence protocols actually provides a parameterized proof in one dimension, namely
data values. Our work can be viewed as an extension of Qadeer’s to two dimensions
(data values and addresses). The only other approach known to us that uses model
checking to verify sequential consistency of parameterized families of protocols is that
of Henzinger et al. [15]. Their semi-automatic method, which builds on a method for
structural induction on processes, can handle families of protocols that are parameter-
ized in the number of processors, in addition to the number of addresses and data values.
However, a limitation of their method is that its soundness relies on the assumption that
the protocol to be verified is location monotonic, in the sense that any trace of the sys-
tem projected onto a subset of locations is a trace of the system with just that subset
of locations. Henzinger et al. do not provide a method (automated or otherwise) for
testing location monotonicity of a parameterized family of protocols. (Nalumasu [25]
does provide a framework for expressing protocols that guarantees location monotonic-
ity, but the framework has very limited expressiveness.) Moreover, the Henzinger et al.
method works only for protocols whose set of traces can be reordered by a finite state
machine to form serial traces, a restriction that typically holds in practice only for pro-
tocols that are already fully serial. While protocols with traces that are not in simple
SC can be handled, many protocols do not have finite-state observers; examples include
both protocols described in this paper and the lazy caching protocol of Afek et al. [1].
(Although Henzinger et al. state in their paper that the lazy caching protocol has a finite
state observer, this is only true of their simplified version.) In summary, while the Hen-
zinger et al. method does allow the number of processors to be parameterized (unlike
ours), their method is not automatic and applies to a limited protocol class that excludes
important real protocols.
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