Abstract
A novel robust method is presented for the registration of 3-D ultrasound images. The proposed method improves the performance of the voxel property-based affine registration in two aspects. First, a set of wavelet-like Gabor filters is used to extract the texture and edge features of the voxels. By using these features, the smoothness of the similarity function in large scale can be improved. Furthermore, adopting edge information can improve the registration accuracy. Second, a robust maximization method based on the mean-shift algorithm and Powell’s direction set method is proposed. The implicitly embedded smoothing process of the mean-shift algorithm can effectively remove the local fluctuation of the similarity function and significantly improve the robustness of optimization. Experimental results demonstrate the robust and accurate performance of the proposed method in the registration of 3-D ultrasound fetal head images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Shekhar, R., Zagrodsky, V.: Mutual Imformation-Based Rigid and Nonrigid Registration of Ultrasound Volumes. IEEE Trans. Medical Imaging 21(1), 9–22 (2002)
Rohling, R.N., Gee, A.H., Berman, L.: Automatic Registration of 3-D Ultrasound Images. Ultrasound Med. Biol. 24, 841–854 (1998)
Meyer, C.R., Boes, J.L., Kim, B., Bland, P.H., Lecarpentier, G.L., Fowlkes, J.B., Roubidoux, M.A., Carson, P.L.: Semiautomatic Registration of Volumetric Ultrasound Scans. Ultrasound Med. Biol. 25, 339–347 (1999)
Xiao, G., Brady, M., Noble, J.A., Burcher, M., English, R.: Nonrigid Registration of 3-D Free-Hand Ultrasound Images of the Breast. IEEE Trans. Medical Imaging 21(4), 405–412 (2002)
Gee, A.H., Treece, G.M., Prager, R.W., Cash, C.J.C., Berman, L.: Rapid Registration for Wide Field of View Freehand Tree-Dimensional Ultrasound. IEEE Trans. Medical Imaging 22(11), 1344–1357 (2003)
Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C, 2nd edn. Cambridge Univ. Press, Cambridge (1992)
Clausi, D.A., Jernigan, M.E.: Designing Gabor Filters for Optimal Texture Separability. Pattern Recognition 33, 1835–1849 (1999)
Bovik, A.C., Clark, M., Geisler, W.S.: Multichannel Texture Analysis Using Localized Spatial Filters. IEEE Trans. Pattern Anal. Machine Intell. 12(1), 55–73 (1990)
Chen, C.M., Lu, H.H., Han, K.: A Textural Approach Based on Gabor Functions for Texture Edge Detection in Ultrasound Images. Ultrasound Med. Biol. 27(4), 515–534 (2001)
Shen, D., Zhan, Y., Davatzikos, C.: Segmentation of Prostate Boundaries from Ultrasound Images Using Statistical Shape Model. IEEE Trans. Medical Imaging 22(4), 539–551 (2003)
Roche, A., Malandain, G., Pennec, X., Ayache, N.: The Correlation Ratio as a New Similarity Measure for Multimodal Image Registration. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 1115–1124. Springer, Heidelberg (1998)
Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality Image Registration by Maximization of Mutual Information. IEEE Trans. Medical Imaging 16(2), 187–197 (1997)
Cheng, Y.: Mean Shift, Mode Seeking, and Clustering. IEEE Trans. Pattern Anal. Machine Intell. 17(8), 790–799 (1995)
Roche, A., Malandain, G., Ayache, N.: Unifying Maximum Likelihood Approaches in Medical Image Registration. International Journal of Imaging Systems and Technology: Special Issue on 3D Imaging 11(1), 71–80 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cen, F., Jiang, Y., Zhang, Z., Tsui, H.T., Lau, T.K., Xie, H. (2004). Robust Registration of 3-D Ultrasound Images Based on Gabor Filter and Mean-Shift Method. In: Sonka, M., Kakadiaris, I.A., Kybic, J. (eds) Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis. MMBIA CVAMIA 2004 2004. Lecture Notes in Computer Science, vol 3117. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27816-0_26
Download citation
DOI: https://doi.org/10.1007/978-3-540-27816-0_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22675-8
Online ISBN: 978-3-540-27816-0
eBook Packages: Springer Book Archive