Skip to main content

Approximating Additive Distortion of Embeddings into Line Metrics

  • Conference paper
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (RANDOM 2004, APPROX 2004)

Abstract

We consider the problem of fitting metric data on n points to a path (line) metric. Our objective is to minimize the total additive distortion of this mapping. The total additive distortion is the sum of errors in all pairwise distances in the input data. This problem has been shown to be NP-hard by [13]. We give an O(logn) approximation for this problem by using Garg et al.’s [10] algorithm for the multi-cut problem as a subroutine. Our algorithm also gives an O(log1/p n) approximation for the L p norm of the additive distortion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agarwala, R., Bafna, V., Farach, M., Narayanan, B.O., Paterson, M., Thorup, M.: On the approximability of numerical taxonomy (fitting distances by tree metrics). In: Symposium on Discrete Algorithms, pp. 365–372 (1996)

    Google Scholar 

  2. Badoiu, M., Indyk, P., Rabinovich, Y.: Approximate algorithms for embedding metrics into low-dimensional spaces. (2003) (Unpublished manuscript)

    Google Scholar 

  3. Barthélemy, J.-P., Guénoche, A.: Trees and proximity representations. Wiley, New York (1991)

    MATH  Google Scholar 

  4. Blum, A., Chawla, S., Karger, D., Meyerson, A., Minkoff, M., Lane, T.: Approximation algorithms for orienteering and discounted-reward tsp. In: IEEE Symposium on Foundations of Computer Science (2003)

    Google Scholar 

  5. Cavalli-Sforza, L., Edwards, A.: Phylogenetic analysis models and estimation procedures. American Journal of Human Genetics 19, 233–257 (1967)

    Google Scholar 

  6. Deza, M., Laurent, M.: Geometry of Cuts and Metrics. Springer, Berlin (1997)

    MATH  Google Scholar 

  7. Dhamdhere, K., Gupta, A., Ravi, R.: Approximating average distortion for embeddings into line. In: Symposium on Theoretical Aspects of Computer Science, STACS (2004)

    Google Scholar 

  8. Farach, M., Kannan, S., Warnow, T.: A robust model for finding optimal evolutionary trees. Algorithmica 13, 155–179 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. W. H. Freeman, San Fransisco (1979)

    MATH  Google Scholar 

  10. Garg, N., Vazirani, V., Yannakakis, M.: Approximate max-flow min-(multi)cut theorems and their applications. SIAM Journal on Computing 25(2), 235–251 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Håstad, J., Ivansson, L., Lagergren, J.: Fitting points on the real line and its application to RH mapping. In: European Symposium on Algorithms, pp. 465–476 (1998)

    Google Scholar 

  12. Klein, P., Agarwal, A., Ravi, R., Rao, S.: Approximation through multicommodity flow. In: IEEE Symposium on Foundations of Computer Science, pp. 726–737 (1990)

    Google Scholar 

  13. Saxe, J.B.: Embeddability of graphs into k-space is strongly np-hard. In: Allerton Conference in Communication, Control and Computing, pp. 480–489 (1979)

    Google Scholar 

  14. Sneath, P.H.A., Sokal, R.R.: Numerical Taxonomy. W. H. Freeman, San Fransisco (1973)

    MATH  Google Scholar 

  15. Waterman, M.S., Smith, T.S., Singh, M., Beyer, W.A.: Additive evolutionary trees. Journal of Theoretical Biology 64, 199–213 (1977)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dhamdhere, K. (2004). Approximating Additive Distortion of Embeddings into Line Metrics. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. RANDOM APPROX 2004 2004. Lecture Notes in Computer Science, vol 3122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27821-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27821-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22894-3

  • Online ISBN: 978-3-540-27821-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics