Skip to main content

A Human-Like Robot Hand and Arm with Fluidic Muscles: Biologically Inspired Construction and Functionality

  • Chapter
Embodied Artificial Intelligence

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3139))

Abstract

Humanoid robots are fascinating from two points of view, firstly their construction and secondly because they lend life to inanimate objects. The combination of biology and robots leads to smoother and compliant movement which is more pleasant for us as people. Biologically inspired robots embody non-rigid movement which are made possible by special joints or actuators which give way and can both actively and passively adapt stiffness in different situations. The following paper deals with the construction of a compliant embodiment of a humanoid robot arm, including a five-finger hand with artificial fluidic muscles. The biologically inspired decentralized control architecture allows small units to be responsible for each main movement task. The first section gives a short introduction as to how bionics engineers think and tries to motivate us to build compliant machines. The second section looks at mechanical aspects, limitations and constraints and furthermore describes a human-like robot arm and hand. Section 3 presents the fluidic muscle actuator of the company FESTO. The fourth section describes the decentralized control architecture and the electronic components. The last section concludes the paper while looking at further prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rechenberg, I.: Evolutionsstrategie 1994, p. 434. fromman-holzboog (1994)

    Google Scholar 

  2. Šurdiloviæ, D.T.: Synthesis of Robust Compliance Control Algorithms for Industrial Robots and Advanced Interaction Systems, in Mechanical Engineering Faculty. University in Niš, 475 (2002)

    Google Scholar 

  3. Okada, M., MNakamura, Y., Ban, S.: Design of Programmable Passive Compliance Shoulder Mechanism. In: Proceedings of the 2001 IEEE International Conference on Robotics & Automation, Seoul, Korea (2001)

    Google Scholar 

  4. Ahmadi, M., Buehler, M.: Stable Control of a Simulated One-Legged Running Robot with Hip and Leg Compliance. In: Department of Mechanical Engineering, Centre For Intelligent Machines, p. 9. McGill University, Montral (1996)

    Google Scholar 

  5. Rocco, P., Ferretti, G., Magnani, G.: Implicite Force Control for Industrial Robots in Contact with Stiff Surfaces. Automatica 33(11), 2041–2047 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fenn, W.O., Marsh, B.S.: Muscular force at different speeds of shortening. Journal of physiology 85(3), 277–298 (1935)

    Google Scholar 

  7. Gordon, A.M., Huxley, A.F., Julian, F.J.: The variation in isometric tension with sarcomere length in vertebrate muscle fibres. Journal of Physiology 184, 170–192 (1966)

    Google Scholar 

  8. Carlson, F.D., Wilkie, D.R.: Muscle Physiology. Prentice-Hall, Englewood Cliffs (1974)

    Google Scholar 

  9. Huxley, A.F.: Muscular Contraction. Journal of Physiology 243, 1–43 (1974)

    Google Scholar 

  10. Gohlke, F.: Biomechanik der Schulter. Orthopäde, vol. 29, pp. 834–844. Springer-, Heidelberg (2000)

    Google Scholar 

  11. Jacobsen, S.C., et al.: The Utah/MIT dexterous hand:Work in progress. Int. J. Robot. Res. 3(4), 21–50 (1984)

    Article  Google Scholar 

  12. Jacobsen, S.C., et al.: Design of the Utah/MIT Dextrous Hand. In: Proceedings IEEE Int. Conf. on Robotics and Automation, USA, pp. 1520–1532 (1986)

    Google Scholar 

  13. Fischer, T., Woern, H.: Structure of a robot system: Karlsruhe dextrous hand II. In: Proc. of Mediterranean Conf. on Control and Systems (1998)

    Google Scholar 

  14. Osswald, D., Wörn, H.: Mechanical System and Control System of a Dexterous Robot Hand. In: Proceedings of the IEEE-RAS International Conference on Humanoid Robots, p. 8 (2001)

    Google Scholar 

  15. Salisbury, J.K.: Articulated Hands: Force Control and Kinematics Issues. Stanford University, Stanford (1982)

    Google Scholar 

  16. Salisbury, J.K.: Design and Control of an Articulated Hand. In: Int. Symposium on Design and Synthesis, Tokio (1984)

    Google Scholar 

  17. Rosheim, M.: Robot Evolution, pp. 216–224. Wiley, New York (1994)

    Google Scholar 

  18. Lin, L.R., Huang, H.P.: Integrating fuzzy control of the dexterous National Taiwan University (NTU) hand. IEEE/ASME Trans. Mechatron 1, 216–229 (1996)

    Article  Google Scholar 

  19. Butterfass, J., et al.: DLR’s Multisensory Articulated Hand Part I: Hard- and Software Architecture. In: IEEE International Conference on Robotics and Automation, pp. 2081–2086 (1998)

    Google Scholar 

  20. Butterfass, J., et al.: DLR-Hand II: Next Generation of Dextrous Robot Hand. In: Proc. IEEE Conf. on Robotics and Automation, Seoul, Korea, pp. 109–114 (2001)

    Google Scholar 

  21. Dario, P., et al.: On the development of a cybernetic hand prosthesis

    Google Scholar 

  22. Bernieri, S., et al.: The DIST-Hand Robot. In: IROS 1997 Conf. Video Proceedings, Grenoble, France (1997)

    Google Scholar 

  23. Caffaz, A., Cannata, G.: The Design and Development of the DIST-Hand Dextrous Gripper. In: Proc. IEEE Int. Conf. on Robotics and Automation, Leuven, Belgium, pp. 2075–2080 (1998)

    Google Scholar 

  24. Caffaz, A., et al.: The DIST-Hand, an Anthropomorphic, Fully Sensorized Dexterous Gripper. In: IEEE Humanoids 2000, MIT, Boston (2000)

    Google Scholar 

  25. Kawasaki, H., Komatsu, T.: Mechanism design of anthropomorphic robot hand: Gifu hand I. J. Robot. Mechatron 11(4), 269–273 (1999)

    Google Scholar 

  26. Kawasaki, H., Komatsu, T., Uchiyama, K.: Dexterous Anthropomorphic Robot Hand With Distributed Tactile Sensor: Gifu Hand II. IEEE/ASME Transactions on Mechatronics 7(3), 296–303 (2002)

    Article  Google Scholar 

  27. Mouri, T., et al.: Anthropomorphic Robot Hand: Gifu Hand III. ICCA, Muju Resort, Jeonbuk, Korea, p. 6 (2002)

    Google Scholar 

  28. Lovchik, C.S., Diftler, M.A.: The robonaut hand: A dextrous robot hand for space. In: Proc. IEEE Conf. on Robotics and Automation, pp. 907–912 (1999)

    Google Scholar 

  29. Hirose, S., Ma, S.: Coupled tendon-driven multijoint manipulator. In: Proceedings of IEEE International Conference on Robotics & Automation, pp. 1268–1275 (1991)

    Google Scholar 

  30. Ishikawa, Y., et al.: Development of Robot Hands with an Adjustable Power Transmitting Mechanism. In: Intelligent Engineering Systems Through Neural Networks, vol. 10, pp. 631–636. ASME Press (2000)

    Google Scholar 

  31. Folgheraiter, M., et al.: Blackfingers a Sophisticated Hand Prothesis , p. 4

    Google Scholar 

  32. Folgheraiter, M., Gini, G.: Blackfingers an artificial hand that copies human hand in structure, size, and function. In: Proc. IEEE Humanoids 2000, p. 4. MIT, Cambridge (2000)

    Google Scholar 

  33. Schulz, S., Pylatiuk, C., Bretthauer, G.: A new ultralight anthropomorphic hand. In: Proceedings of the 2001 IEEE International Conference on Robotics & Automation Seoul, Korea, pp. 2437–2441 (2001)

    Google Scholar 

  34. Pylatiuk, C., Schulz, S.: Neuentwicklung einer Prothesenhand. Prothetik 8, 4 (2002)

    Google Scholar 

  35. Pylatiuk, C., Schulz, S.: Entwicklung flexibler Fluidaktoren und ihre Anwendung in der Medizintechnik. Med. Orth. Tech. 120, 186–189 (2000)

    Google Scholar 

  36. Design of a Dextrous Hand for advanced CLAWAR applications, Shadow Robot Company: 251 Liverpool Road London ENGLAND (2003)

    Google Scholar 

  37. Schulte, H.F.J.: The characteristics of the McKibben artificial muscle. In: The application of external power in prosthetics and orthotics, National Academy of Science-National Research Council, Washington D.C. (1961)

    Google Scholar 

  38. Chou, C.-P., Hannaford, B.: Static and Dynamic Characteristics of McKibben Pneumatic Artificial Muscles . IEEE (1994) ;Department of Electrical Engineering , FT-10, University of Washington: Seattle, Washington 98195, pp. 281-286

    Google Scholar 

  39. Colbrunn, R.W.: Master of Science, in Department of Mechanical and Aerospace Engineering, Case Western Reserve University, p. 141 (2000)

    Google Scholar 

  40. Tsagarakis, N., Caldwell, D.G.: Improved Modelling and Assessment of pneumatic Muscle Actuator. In: Proceedings of the 2000 IEEE International Conference on Robotics & Automation, San Francisco, CA, pp. 3641–3646 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boblan, I., Bannasch, R., Schwenk, H., Prietzel, F., Miertsch, L., Schulz, A. (2004). A Human-Like Robot Hand and Arm with Fluidic Muscles: Biologically Inspired Construction and Functionality. In: Iida, F., Pfeifer, R., Steels, L., Kuniyoshi, Y. (eds) Embodied Artificial Intelligence. Lecture Notes in Computer Science(), vol 3139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27833-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27833-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22484-6

  • Online ISBN: 978-3-540-27833-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics