Skip to main content

Coloring Semirandom Graphs Optimally

  • Conference paper
Automata, Languages and Programming (ICALP 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3142))

Included in the following conference series:

Abstract

We present heuristics and algorithms with polynomial expected running time for coloring semirandom k-colorable graphs made up as follows. Partition the vertex set V={1,...,n} into k classes V 1,...,V k randomly and include each V i -V j -edge \((i\not=j)\) with probability p independently. Then, an adversary adds further V i -V j -edges \((i\not=j)\). We show that if np ≥ max {(1 + ε)kln (n),Ck 2}, an optimal coloring can be found in polynomial time with high probability. Furthermore, if np ≥ C max {kln (n),k 2ln (k)}, an optimal coloring can be found in polynomial expected time. By contrast, it is NP-hard to find a k-coloring whp. if \(np\leq(\frac12-\varepsilon)k\ln(n/k)\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Kahale, N.: A spectral technique for coloring random 3-colorable graphs. SIAM J. Comput. 26, 1733–1748 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beier, R., Vöcking, B.: Random Knapsack in expected polynomial time. Proc. 35th STOC, pp. 232–241 (2003)

    Google Scholar 

  3. Blum, A., Spencer, J.: Coloring random and semirandom k-colorable graphs. J. of Algorithms 19, 203–234 (1995)

    Article  MathSciNet  Google Scholar 

  4. Boppana, R.: Eigenvalues and graph bisection: An average-case analysis. Proc. 28th FOCS, pp. 280–285 (1987)

    Google Scholar 

  5. Coja-Oghlan, A.: Finding sparse induced subgraphs of semirandom graphs. In: Rolim, J.D.P., Vadhan, S.P. (eds.) RANDOM 2002. LNCS, vol. 2483, pp. 139–148. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Coja-Oghlan, A., Moore, C., Sanwalani, V.: MAX k-CUT and approximating the chromatic number of random graphs. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 200–211. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Coja-Oghlan, A.: Finding large independent sets in polynomial expected time. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 511–522. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Engebretsen, L., Holmerin, J.: Towards optimal lower bounds for clique and chromatic number. TCS 299, 537–584 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Feige, U., Kilian, J.: Heuristics for semirandom graph problems. JCSS 63, 639–671 (2001)

    MATH  MathSciNet  Google Scholar 

  10. Feige, U., Krauthgamer, J.: Finding and certifying a large hidden clique in a semirandom graph. Random Structures & Algorithms 16, 195–208 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Frieze, A., Jerrum, M.: Improved approximation algorithms for MAX k-CUT and MAX BISECTION. Algorithmica 18, 61–77 (1997)

    Article  MathSciNet  Google Scholar 

  12. Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization. Springer, Heidelberg (1988)

    MATH  Google Scholar 

  13. Janson, S., Łuczak, T., Ruciński, A.: Random Graphs. Wiley, Chichester (2000)

    MATH  Google Scholar 

  14. Krivelevich, M.: Coloring random graphs – an algorithmic perspective. In: Proc. 2nd MathInfo, pp. 175–195 (2002)

    Google Scholar 

  15. Kučera, L.: Expected behavior of graph coloring algorithms. In: Karpinski, M. (ed.) FCT 1977. LNCS, vol. 56, pp. 447–451. Springer, Heidelberg (1977)

    Google Scholar 

  16. Kučera, L.: Graphs with small chromatic number are easy to color. Information Processing Letters 30, 233–236 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lawler, E.L.: A note on the complexity of the chromatic number problem. Information Processing Letters 5, 66–67 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  18. Subramanian, C.R.: Minimum coloring random and semirandom graphs in polynomial average time. J. of Algorithms 33, 112–123 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Subramanian, C.R.: Coloring sparse random graphs in polynomial average time. In: Paterson, M. (ed.) ESA 2000. LNCS, vol. 1879, pp. 415–426. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  20. Szegedy, M.: A note on the θ number of Lovász and the generalized Delsarte bound. In: Proc. 35th FOCS, pp. 36–39 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Coja-Oghlan, A. (2004). Coloring Semirandom Graphs Optimally. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds) Automata, Languages and Programming. ICALP 2004. Lecture Notes in Computer Science, vol 3142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27836-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27836-8_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22849-3

  • Online ISBN: 978-3-540-27836-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics