Skip to main content

A Domain Theoretic Account of Picard’s Theorem

  • Conference paper
Automata, Languages and Programming (ICALP 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3142))

Included in the following conference series:

Abstract

We present a domain-theoretic version of Picard’s theorem for solving classical initial value problems in ℝn. For the case of vector fields that satisfy a Lipschitz condition, we construct an iterative algorithm that gives two sequences of piecewise linear maps with rational coefficients, which converge, respectively from below and above, exponentially fast to the unique solution of the initial value problem. We provide a detailed analysis of the speed of convergence and the complexity of computing the iterates. The algorithm uses proper data types based on rational arithmetic, where no rounding of real numbers is required. Thus, we obtain an implementation framework to solve initial value problems, which is sound and, in contrast to techniques based on interval analysis, also complete: the unique solution can be actually computed within any degree of required accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AWA. A software package for validated solution of ordinary differential equations, http://www.cs.utep.edu/interval-comp/intsoft.html

  2. The GNU multi precision library, http://www.swox.com/gmp/

  3. Aberth, O.: Computable analysis and differential equations. In: Intuitionism and Proof Theory. Studies in Logic and the Foundations of Mathematics, pp. 47–52. North-Holland, Amsterdam (1970); Proc. of the Summer Conf. at Buffalo N.Y. (1968)

    Google Scholar 

  4. Abramsky, S., Jung, A.: In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 3, Clarendon Press, Oxford (1994)

    Google Scholar 

  5. Aubin, J.P., Cellina, A.: Differential Inclusions. Springer, Heidelberg (1984)

    MATH  Google Scholar 

  6. Brattka, V.: Computability of Banach space principles. Informatik Berichte 286, FernUniversität Hagen, Fachbereich Informatik (June 2001)

    Google Scholar 

  7. Clarke, F.H., Ledyaev, Y.S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  8. Cleave, J.P.: The primitive recursive analysis of ordinary differential equations and the complexity of their solutions. Journal of Computer and Systems Sciences 3, 447–455 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  9. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill, New York (1955)

    MATH  Google Scholar 

  10. Edalat, A., Krznarić, M., Lieutier, A.: Domain-theoretic solution of differential equations (scalar fields). In: Proceedings of MFPS XIX. of Elect. Notes in Theoret. Comput. Sci., vol. 83 (2004), Full Paper in www.doc.ic.ac.uk/~ae/papers/scalar.ps

  11. Edalat, A., Lieutier, A.: Domain theory and differential calculus (Functions of one variable). In: Seventh Annual IEEE Symposium on Logic in Computer Science, IEEE Computer Society Press, Los Alamitos (2002), Full paper in www.doc.ic.ac.uk/~ae/papers/diffcal.ps

    Google Scholar 

  12. Grzegorczyk, A.: Computable functionals. Fund. Math. 42, 168–202 (1955)

    MATH  MathSciNet  Google Scholar 

  13. Iserles, A.: Numerical Analysis of Differential Equations. Cambridge Texts in Applied Mathematics. CUP (1996)

    Google Scholar 

  14. Ko, K.-I.: On the computational complexity of ordinary differential equations. Inform. Contr. 58, 157–194 (1983)

    Article  MATH  Google Scholar 

  15. Kolmogorov, A.N., Fomin, S.V.: Introductory Real Analysis. Dover, New York (1975)

    Google Scholar 

  16. Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)

    MATH  Google Scholar 

  17. Müller, N.T., Moiske, B.: Solving initial value problems in polynomial time. In: Proceedings of the 22th JAIIO - Panel 1993, Buenos Aires, pp. 283–293 (1993)

    Google Scholar 

  18. Nedialkov, N.S., Jackson, K.R., Corliss, G.F.: Validated solutions of initial value problems for ordinary differential equations. Applied Mathematics and Computation 105, 21–68 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Springer, Heidelberg (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Edalat, A., Pattinson, D. (2004). A Domain Theoretic Account of Picard’s Theorem. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds) Automata, Languages and Programming. ICALP 2004. Lecture Notes in Computer Science, vol 3142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27836-8_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27836-8_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22849-3

  • Online ISBN: 978-3-540-27836-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics