Skip to main content

Word Problems on Compressed Words

  • Conference paper
Automata, Languages and Programming (ICALP 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3142))

Included in the following conference series:

Abstract

We consider a compressed form of the word problem for finitely presented monoids, where the input consists of two compressed representations of words over the generators of a monoid \(\mathcal M\), and we ask whether these two words represent the same monoid element of \(\mathcal M\). For compression we use straight-line programs. For several classes of monoids we obtain completeness results for complexity classes in the range from P to EXPSPACE. As a by-product of our results on compressed word problems we obtain a fixed deterministic context-free language with a PSPACE-complete membership problem. The existence of such a language was open so far. Finally, we investigate the complexity of the compressed membership problem for various circuit complexity classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrington, D.A.M.: Bounded-width polynomial-size branching programs recognize exactly those languages in NC1. J. Comput. Syst. Sci. 38, 150–164 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barrington, D.A.M., Lu, C.-J., Miltersen, P.B., Skyum, S.: Searching constant width mazes captures the AC0 hierarchy. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 73–83. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  3. Bauer, G., Otto, F.: Finite complete rewriting systems and the complexity of the word problem. Acta Inf. 21, 521–540 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  4. Beaudry, M., Holzer, M., Niemann, G., Otto, F.: McNaughton families of languages. Theor. Comput. Sci. 290(3), 1581–1628 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Beaudry, M., McKenzie, P., Péladeau, P., Thérien, D.: Finite monoids: From word to circuit evaluation. SIAM J. Comput. 26(1), 138–152 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Book, R.V.: Homogeneous Thue systems and the Church–Rosser property. Discrete Math. 48, 137–145 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  7. Book, R.V., Jantzen, M., Monien, B., Ó’Dúnlaing, C.P., Wrathall, C.: On the complexity of word problems in certain Thue systems. In: Gruska, J., Chytil, M.P. (eds.) MFCS 1981. LNCS, vol. 118, pp. 216–223. Springer, Heidelberg (1981)

    Google Scholar 

  8. Book, R.V., Otto, F.: String–Rewriting Systems. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  9. Gasieniec, L., Karpinski, M., Plandowski, W., Rytter, W.: Efficient algorithms for Lempel-Ziv encoding. In: Karlsson, R., Lingas, A. (eds.) SWAT 1996. LNCS, vol. 1097, pp. 392–403. Springer, Heidelberg (1996) (extended abstract)

    Google Scholar 

  10. Holzer, M., Lange, K.-J.: On the complexities of linear LL(1) and LR(1) grammars. In: Ésik, Z. (ed.) FCT 1993. LNCS, vol. 710, pp. 299–308. Springer, Heidelberg (1993)

    Google Scholar 

  11. Krentel, M.W.: The complexity of optimization problems. J. Comput. Syst. Sci. 36(3), 490–509 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lengauer, T., Wanke, E.: The correlation between the complexities of the nonhierarchical and hierarchical versions of graph problems. J. Comput. Syst. Sci. 44, 63–93 (1992)

    Article  MATH  Google Scholar 

  13. Lewis II, P.M., Stearns, R.E., Hartmanis, J.: Memory bounds for recognition of context-free and context-sensitive languages. In: Proc. Sixth Annual IEEE Symp. on Switching Circuit Theory and Logic Design, pp. 191–202 (1965)

    Google Scholar 

  14. Lipton, R.J., Zalcstein, Y.: Word problems solvable in logspace. J. Assoc. Comput. Mach. 24(3), 522–526 (1977)

    MATH  MathSciNet  Google Scholar 

  15. Lohrey, M.: Word problems and confluence problems for restricted semi-Thue systems. In: Bachmair, L. (ed.) RTA 2000. LNCS, vol. 1833, pp. 172–186. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. Lohrey, M.: Word problems for 2-homogeneous monoids and symmetric logspace. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 500–511. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  17. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  18. Plandowski, W.: Testing equivalence of morphisms on context-free languages. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 460–470. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  19. Plandowski, W., Rytter, W.: Complexity of language recognition problems for compressed words. In: Jewels are Forever, Contributions on Theoretical Computer Science in Honor of Arto Salomaa, pp. 262–272. Springer, Heidelberg (1999)

    Google Scholar 

  20. Robinson, D.: Parallel Algorithms for Group Word Problems. PhD thesis, University of California, San Diego (1993)

    Google Scholar 

  21. Rytter, W.: Compressed and fully compressed pattern matching in one and two dimensions. Proc. IEEE 88(11), 1769–1778 (2000)

    Article  Google Scholar 

  22. Sipser, M.: Borel sets and circuit complexity. In: Proc. STOC 1983, pp. 61–69. ACM Press, New York (1983)

    Google Scholar 

  23. Stillwell, J.: The word problem and the isomorphism problem for groups. Bull. Am. Math. Soc., New Ser. 6(1), 33–56 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sudborough, I.H.: On the tape complexity of deterministic context–free languages. J. Assoc. Comput. Mach. 25(3), 405–414 (1978)

    MATH  MathSciNet  Google Scholar 

  25. Veith, H.: Succinct representation, leaf languages, and projection reductions. Inf. Control 142(2), 207–236 (1998)

    MATH  MathSciNet  Google Scholar 

  26. Wagner, K.W.: The complexity of combinatorial problems with succinct input representation. Acta Inf. 23(3), 325–356 (1986)

    Article  MATH  Google Scholar 

  27. Zhang, Y., Gupta, R.: Path matching in compressed control flow traces. In: Proc. DCC 2002, pp. 132–141. IEEE Computer Society Press, Los Alamitos (2002)

    Google Scholar 

  28. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. on Inf. Theory 23(3), 337–343 (1977)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lohrey, M. (2004). Word Problems on Compressed Words. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds) Automata, Languages and Programming. ICALP 2004. Lecture Notes in Computer Science, vol 3142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27836-8_76

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27836-8_76

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22849-3

  • Online ISBN: 978-3-540-27836-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics