Abstract
In the paper we present a distributed probabilistic algorithm for coloring the vertices of a graph. Since this algorithm resembles a largest-first strategy, we call it the distributed LF (DLF) algorithm. The coloring obtained by DLF is optimal or near optimal for numerous classes of graphs e.g. complete k-partite, caterpillars, crowns, bipartite wheels. We also show that DLF runs in O(Δ2 log n) rounds for an arbitrary graph, where n is the number of vertices and Δ denotes the largest vertex degree.
Chapter PDF
Similar content being viewed by others
References
Battiti, R., Bertossi, A.A., Bonuccelli, M.A.: Assigning codes in wireless networks. Wireless Networks 5, 195–209 (1999)
Grable, D.A., Panconesi, A.: Fast distributed algorithms for Brooks-Vizing colorings. J. Algorithms 37, 85–120 (2000)
Johansson, Ö.: Simple distributed Δ + 1 – coloring of graphs. Inf. Process. Lett. 70, 229–232 (1999)
Karp, R.M.: Probabilistic recurrence relations. J. ACM 41, 1136–1150 (1994)
Kubale, M.: Introduction to Computational Complexity and Algorithmic Graph Coloring. GTN, Gdańsk (1998)
Kubale, M., Kuszner, Ł.: A better practical algorithm for distributed graph coloring. In: Proc. of IEEE International Conference on Parallel Computing in Electrical Engineering, pp. 72–75 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hansen, J., Kubale, M., Kuszner, Ł., Nadolski, A. (2004). Distributed Largest-First Algorithm for Graph Coloring. In: Danelutto, M., Vanneschi, M., Laforenza, D. (eds) Euro-Par 2004 Parallel Processing. Euro-Par 2004. Lecture Notes in Computer Science, vol 3149. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27866-5_107
Download citation
DOI: https://doi.org/10.1007/978-3-540-27866-5_107
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22924-7
Online ISBN: 978-3-540-27866-5
eBook Packages: Springer Book Archive