Detecting Data Races in Sequential Programs
with DIOTA

Michiel Ronsse, Jonas Maebe, and Koen De Bosschere

Department ELIS, Ghent University, Belgium
{michiel.ronsse, jonas.maebe,koen.debosschere}@UGent .be
http://www.elis.UGent.be/diota/

Abstract. In this paper we show that data races, a type of bug that
generally only causes havoc in parallel programs, can also occur in se-
quential programs that use signal handlers. Fortunately, it turns out that
adapting existing data race detectors to detect such bugs for sequential
programs is straightforward. We present such a tool, and we describe
the modifications that were necessary to detect data races in sequential
programs. The experimental evaluation revealed a number of data races
in some widely used programs.

1 Introduction

Developing parallel programs is encumbered by the fact that proper synchronisa-
tion must be used to access shared variables. A lack of synchronisation will lead
to a data race [1]: two or more parallel executing threads access the same shared
memory location in an unsynchronised way, and at least one of the threads mod-
ifies the contents of the location. Note that the prerequisite parallel execution
does not imply that the application should be executed on a parallel computer
with multiple processors on which true physical parallel execution is possible. A
data race is also possible on computers with only one processor, as the scheduler
simulates logical parallellism between the threads.

As data races are (most of the time) considered bugs, they should be removed.
Fortunately, automatic data race detection is possible and a number of data race
detectors have been build in the past [2, 3]. Basically, two types of information
are needed to perform data race detection: a list of all load/store operations
(with information about the memory address used, the thread that executed the
instruction, the type of operation (load, store or modify)) and information about
their concurrency. The latter information can be deduced by intercepting the
synchronisation operations (e.g. thread creation, mutex operations, semaphore
operations, ... ).

Developers of sequential programs do not have to worry about data races,
except if the program uses signal handlers. We’'ll show that signal handlers in-
troduce logical parallellism and as such data races can show up.

In the remainder of this paper, we start with a short description of UNIX
type signals and signal handlers. Next, we’ll show that signal handlers indeed

M. Danelutto, D. Laforenza, M. Vanneschi (Eds.): Euro-Par 2004, LNCS 3149, pp. 82-89, 2004.
© Springer-Verlag Berlin Heidelberg 2004



Detecting Data Races in Sequential Programs with DIOTA 83

introduce parallellism, even in sequential programs, and we’ll describe how an
existing data race detector for IA32 binaries running on Linux has been adapted
to detect them. We end with an experimental evaluation. To the best of our
knowledge, there are no other data race detectors that deal with signal handlers.

2 Signals

A signal is an important communication mechanism that was already supported
by the very first UNIX-implementations [4]. A signal is basically a message
(signal number, identity of the sender, context information, ...) that can be
sent to a process. The signal can either be sent by a process (including the
recipient) using the kill system call, or the kernel can trigger one upon the
occurrence of a certain event (e.g. a processor trap). In both cases, the kernel
will notify the application by sending the appropriate signal (read: setting a bit in
the process context). The next time the application is scheduled, the application
will execute the corresponding signal handler. Such a signal handler is a function
that is registered with the kernel by means of the signal or sigaction system
call. E.g. Figure 1 shows a program that will print You pressed ~C! each time
~C is pressed.

Typical signals are SIGSEGV (the application tries to access an invalid mem-
ory location), SIGILL (an illegal instruction was executed), SIGFPE (a floating
point exception occurred), SIGPIPE (broken pipe), SIGALRM (normally sent
by an application to itself in order to execute a function at a certain time in
the future), SIGINT (interrupt signal sent by the shell when you press ~C), SI-
GUSRI1 (a general purpose signal), SSIGWINCH (sent by the window manager
when the size of the window changes), . ...

As mentioned above, when a signal reaches' an application, the normal pro-
gram execution is interrupted and a signal handler is executed instead. As the
program execution can be interrupted at any time, esp. if a signal was sent by
another application, a data race can occur if one does not pay attention to this
fact. Figure 2 shows an example: in main() the variable global is incremented
and decremented a (large) number of times, resulting in a final value of 0 for
global. However, each time ~C is pressed, a signal handler gives global an ad-
ditional increment, resulting in a positive final value for global. This should be
considered to be a data race: two unsynchronised write operations to the same
variable. Of course, this is an artificial example, but similar problems can occur
in real life applications, e.g. a graphical application that receives a SIGWINCH
signal should update its width and height with care.

In [5], a number of Linux applications were examined, and the author states
that “80 to 90% of signal handlers we have examined were written in an insecure
manner”. The manual inspection revealed races in such high-profile applications
as sendmail, WU-FTP and screen.

! Two signals (SIGKILL and SIGSTOP) never reach an application, but are directly
handled by the kernel.



84 M. Ronsse, J. Maebe, and K. De Bosschere
#include <signal.h>
void sigint () {puts("You pressed “C!");}

main(){
signal (SIGINT, sigint);
while(1){}

}

Fig. 1. A simple signal handler example.

#include <signal.h>

#define N 1<<24
unsigned global=0;

void sigint(){global++;}

main(){
unsigned i;
signal (SIGINT, sigint);
i=N; while (i--) global++;
i=N; while (i--) global--;
}

Fig. 2. A small program exhibiting a data race involving global.

3 Dealing with Signals
in the Context of Data Race Detection

In order to detect data races in signal handlers, one has to trace the memory
operations and gather information about their concurrency. The latter requires
some attention: although signal handlers normally do not use synchronisation
operations in order to prevent data races, not all signal handler memory op-
erations are parallel with all memory operations executed by the application
itself.

Attention should be paid to the following points:

— the data race detector should take into account that it is impossible to exe-
cute a signal handler before the signal handler is registered with the kernel.
E.g. Figure 3 shows a program in which global is modified in main() and
in the sigint () signal handler. As the signal is installed after the modifica-
tion of global in main(), the accesses to global will never be executed in
parallel, and hence no data race can occur.

— the above also applies to a signal that was sent by the application itself,
e.g. using the kill() or alarm() function. Figure 4 shows an application
that sends an alarm signal to itself. In this case, no data race occurs as the



Detecting Data Races in Sequential Programs with DIOTA 85

#include <signal.h>

unsigned global=0;

void sigint (){global++;}

main(){

}

global++;
signal (SIGINT, sigint);
sleep(10);

Fig. 3. This program does not exhibit a data race involving global as main accesses
global before the signal handler is installed.

#include <signal.h>

unsigned global=0;

void sigalarm(){ @

global+;+

} 80

main(){

}

signal (SIGALRM, sigalarm); @
global+;+
alarm(10); //send a SIGALRM to ourself in 10 seconds @

Fig. 4. This program does not exhibit a data race involving global as main accesses
global before sending the signal. However, a data race will occur if another process
also sends a SIGALRM to the application. The numbers refer to the modifications that
were applied to our data race detector, see section 4.3.

alarm() call always precedes the execution of the sigalarm() handler. Of
course, as the SIGALRM can also be sent by another application (resulting in a
data race), the signal context should be checked; if the sender is the process
itself, the data race detector should update the concurrency information.
the easiest way to prevent data races in signal handlers is blocking the arrival
of signals. Signals can be blocked automatically each time a certain signal
handler is executed or explicitly using the sigprocmask system call. For
both methods, a mask with one bit per signal is registered in the kernel. A
data race detector should take this blocking into account.

during the execution of a signal handler, the thread executing the signal
handler should be assigned a new thread number. This also applies to a

signal handler preempting the execution of another (or the same) signal
handler.



86 M. Ronsse, J. Maebe, and K. De Bosschere

4 Implementation in DIOTA

We have implemented data race detection for sequential programs in the data
race detector that is part of our DIOTA (Dynamic Instrumentation, Optimisa-
tion and Transformation of Applications) framework for Linux running on TA32
processors [6].

4.1 Description of DIOTA

DIOTA is implemented as a shared library for the Linux/80x86 platform. It
instruments programs at the machine code level, so it is completely compiler-
and language-agnostic and can also cope with hand-written assembler code. It
has support for extensions to the 80x86 ISA such as MMX, 3DNow! and SSE
and is written in an extensible and modular way so that adding support for new
instructions and new types of instrumentation is easy.

An environment variable is used to tell the dynamic linker to load the DIOTA
library whenever a dynamically linked application is started?. An init routine
allows DIOTA to be activated before the main program is started, after which
it can gain full control and start instrumenting.

The instrumentation happens gradually as more code of the program (and
the libraries that it uses) is executed, so there is no need for complex analysis
of the machine code to construct control-flow graphs or to detect code-in-data.
The instrumented version of the code is placed in a separate memory region
(called the “clone”), so the original program code is not touched and as such
neither data-in-code nor the variable-length property of 80x86 instructions pose
a problem.

The behaviour of DIOTA can be influenced by using so-called backends.
These are dynamic libraries that link against DIOTA and tell it what kind of
instrumentation should be performed. They can ask for any dynamically linked
routine to be intercepted and replaced with a routine of their own, ask to be
notified of each memory access, of each basic block that is executed and of each
system call that is performed (both before and after their execution, so their
behaviour can be modified as well as analysed).

4.2 Description of the Data Race Backend of DIOTA

The data race detection backend [7] is implemented as a shared library that uses
the services provided by DIOTA. The backend requests DIOTA to instrument all
memory operations and to intercept all pthread synchronisation operations and
provides functions that should be called whenever a memory or synchronisation
operations occurs. The data race detector works as follows:

— For all parallel pieces of code, the memory operations are collected and
compared. This is based on the fact that all memory operations between

2 A dynamically linked helper program is used to instrument statically linked binaries.



Detecting Data Races in Sequential Programs with DIOTA 87

two successive synchronisation operations (called segments) satisfy the same
concurrency relation: they are either all parallel or not parallel with a given
operation and therefore with the segment containing the latter operation.
Given the sets L(i) and S(7) containing the addresses used by the load and
store operations in segment ¢, the parallel segments ¢ and j contain racing
operations if and only if

(G us@)ns@)u((EG)USH) NS0 #0

Therefore, data race detection basically boils down to collecting the sets L(7)
and S(i) for all segments executed and comparing parallel segments.

— In order to detect parallel segments, a vector timestamp [8,9] is attached
to each segment. As vector clocks are able to represent the happened-before
[10] relation (they are strongly consistent), two vector clocks that are not
ordered must belong to parallel segments. This gives us an easy way to detect
parallel segments.

4.3 Modifications to Support Data Race Detection
in Signal Handlers

In order to detect data races in sequential programs, the backend was adapted
as follows (the numbers refer to the annotated Figure 4):

O the data race detector is informed when the application installs a signal
handler. The current segment is ended, a new segment is started and the
vector timestamp is saved (as VC_install).

@ the data race detector is informed when the application sends a signal. If the
target of the signal is the application itself, the current segment is ended, a
new segment is started and the vector timestamp is saved (as VC_signal).

@ each time signals become unblocked (by exiting a signal handler, or by using
sigprocmask), a new segment is started and the vector timestamp is saved
(as VC_install) for each signal that becomes unblocked.

0,0 the data race detector is informed at the begin and at the end of the
execution of a signal handler. The backend then uses a new thread number for
all memory and synchronisation operations executed by this signal handler.
The initial vector timestamp for the signal handler is

— if the signal was sent by the application itself (can be detected by check-
ing the signal context), the signal handler gets the vector clock that was
saved when the signal was sent (VC_install).

— if the signal was sent by another application, the signal handler gets the
vector clock that was saved when the signal handler was registered with
the kernel (VC_signal).

The additional space required is therefore the space needed to store two vector
timestamps for each signal handler (there are 64 possible signals in Linux). The
actual size of such a vector timestamp can become quite large as each execution



88 M. Ronsse, J. Maebe, and K. De Bosschere

of a signal handler gets a new thread number. The data race backend can cope
with arbitrarily large vectors as as they are enlarged when a new thread starts.
The potentially large memory consumption could be limited by using accordeon
clocks [11] that can shrink as threads exit or by re-using thread numbers.

5 Experimental Evaluation

In order to test our implementation, we used a number of widely used Linux
applications. Using the data race backend is easy: after compiling DIOTA, type
diota-dr and the data race detector will attach itself to applications you start
in the same shell. As the data race detector intercepts all memory operations, a
huge slowdown should be expected (e.g. the mozilla browser incurs a slowdown
of 63.4x [12]).

Our test revealed a number of applications with data races:

vim: (an editor) resizing the VIM window results in a SIGWINCH handler setting
the variable do_resize to TRUE. This variable is then checked in the main
event loop of VIM, where appropriate action is taken. Although our data
race backend flags this as a data race, this is actually no real data race.
This technique (setting a boolean in the signal handler and dealing with the
signal in the main loop) is used in a lot of applications (e.g. the pine e-mail
client, the Apache web server,...). The reason is that, although the signal
handler is executed on behalf of the application, a signal handler is restricted
in its capability to execute kernel calls. Delaying the actual signal handling
so that the main program can handle it at a later point helps overcome this
problem.

links: (a text-only web browser): resizing the window or pressing “C causes
queue_event () to enter this event in a global queue (ditrm). As such, han-
dling queued events while resizing causes havoc.

lynx: (another text-only web browser): global variables LYlines and LYcols
are used for the width and height of the window. The SIGWINCH handler
changes these variables. The highlight () function highlights a link and
uses LYcols to check the available space.

Although we only tested a small number of applications, we were surprised
that we found data races in signal handlers, which clearly shows that developers
don’t pay much attention to this kind of problem.

6 Conclusion

In this paper, we have shown that data races can show up in sequential pro-
grams. Fortunately, extending data race detectors for sequential programs is
fairly straightforward: use a temporary thread number during the execution of
an asynchronous signal handler and use additional rules for updating the vector
clocks. The experimental evaluation revealed a number of data races in widely
used programs. DIOTA is released to the public under the GPL and can be
downloaded from http://www.elis.UGent.be/diota/.



Detecting Data Races in Sequential Programs with DIOTA 89

Acknowledgements

Jonas Maebe is funded by the Institute for the Promotion of Innovation by
Science and Technology in Flanders (IWT). The research was funded by Ghent
University, and by the Fund for Scientific Research-Flanders (FWO-Vlaanderen).

References

10.

11.

12.

. Netzer, R.H., Miller, B.P.: What are race conditions? some issues and formaliza-

tions. ACM Letters on Programming Languages and Systems (1992)

. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: FEraser: A

dynamic data race detector for multithreaded programs. ACM Transactions on
Computer Systems 15 (1997) 391-411

Ronsse, M., De Bosschere, K.: An on-the-fly Data Race Detector for RECPLAY,
a Record/Replay System for Parallel Programs. In: Proceedings of the 16th ACM
Symposium on Operating Systems Principles, Saint-Malo (1997) (on CD)
Stevens, W.R.: Advanced Programming in the UNIX Environment. Addison Wes-
ley (1993)

Zalewski, M.: Delivering signals for fun and profit.
http://razor.bindview.com/publish/papers/signals.txt (2001) RAZOR, BindView
Corporation.

Maebe, J., Ronsse, M., De Bosschere, K.: DIOTA: Dynamic instrumentation,
optimization and transformation of applications. In Charney, M., Kaeli, D., eds.:
Compendium of Workshops and Tutorials Held in conjunction with PACT‘02: Intl.
Conference on Parallel Architectures and Compilation Techniques, Charlottesville,
VA (2002)

Ronsse, M., De Bosschere, K.: Non-intrusive detection of synchronization errors
using execution replay. Automated Software Engineering 9 (2002) 95-121

. Mattern, F.: Virtual time and global states of distributed systems. In Cosnard,

Quinton, Raynal, Roberts, eds.: Proceedings of the Intl. Workshop on Parallel and
Distributed Algorithms. Elsevier Science Publishers B.V., North-Holland (1989)
215226

. Fidge, C.J.: Logical time in distributed computing systems. In: IEEE Computer.

Volume 24. (1991) 28-33

Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21 (1978) 558-565

Christiaens, M., De Bosschere, K.: Accordion clocks: Logical clocks for data race
detection. In Sakellariou, R., Gurd, J., Freeman, L., eds.: Proceedings of the 7th
International Euro-Par Conference, Manchester, Springer (2001) 494-503

Ronsse, M., Stougie, B., Maebe, J., De Bosschere, K.: An efficient data race detec-
tor backend for diota. In: Proceedings of the International Conference ParCo2003.
(2004) To be published.



	1 Introduction
	2 Signals
	3 Dealing with Signals in the Context of Data Race Detection
	4 Implementation in DIOTA
	4.1 Description of DIOTA
	4.2 Description of the Data Race Backend of DIOTA
	4.3 Modifications to Support Data Race Detection in Signal Handlers

	5 Experimental Evaluation
	6 Conclusion
	Acknowledgements
	References



