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Abstract. Performance is a key issue in the development of parallel/distributed 
applications. The main goal of these applications is to solve the considered 
problem as fast as possible utilizing a certain minimum of parallel system ca-
pacities. Therefore, developers must optimize these applications if they are to 
fulfill the promise of high performance computation. To improve performance, 
programmers search for bottlenecks by analyzing application behavior, finding 
problems and solving them by changing the source code. These tasks are espe-
cially difficult for non-expert programmers. Current approaches require devel-
opers to perform optimizations manually and to have a high degree of experi-
ence. Moreover, applications may be executed in dynamic environments. 
Therefore, it is necessary to provide tools that automatically carry out the opti-
mization process by adapting application execution to changing conditions. 
This paper presents the dynamic tuning approach that addresses these issues. 
We also describe an environment called MATE (Monitoring, Analysis and Tun-
ing Environment), which provides dynamic tuning of applications. 

1   Introduction 

Parallel/distributed systems offer high computing capabilities that are used in many 
scientific research fields. They facilitate the determination of the human genome, 
computing atomic interactions or simulating the evolution of the universe. So biolo-
gists, chemists, physicists and other researchers have become intensive users of appli-
cations with high performance computing characteristics. They submit applications to 
powerful systems to get their results as fast as possible. In this context, performance 
becomes a key issue. To satisfy user requirements, applications must reach high per-
formance standards. An application is inefficient and useless when its performance is 
below an acceptable limit. Therefore, applications must not only be systematically 
tested from the functional point of view to guarantee correctness, but must also be 
optimized to ensure that there are no performance bottlenecks.  

The optimization (or tuning) process requires a developer to go through the appli-
cation performance analysis and the modification of critical application parameters. 
First, performance measurements must be taken to provide data about the applica-
tion’s behavior. This phase is known as monitoring and collects data related to the 
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execution of the application. Then, the performance analysis of this information is 
carried out. It finds performance bottlenecks, deduces their causes and determines the 
actions to be taken to eliminate these bottlenecks. Finally, appropriate changes must 
be applied to the application code to overcome problems and improve performance. 
However, all these tasks are somewhat complicated, especially for non-expert users. 

The classical approach to performance analysis is based on the visualization of 
program execution. Tools that support this approach show the execution of the appli-
cation in graphical and numerical views [1, 2, 3]. Then, users must analyze generated 
views recognizing the most problematic performance regions, determining the causes 
of the bottlenecks and finally changing the application source code. To reduce devel-
oper effort and relieve them of such duties as analysis of graphical information and 
determination of performance problems, an automatic analysis has been proposed. 
Tools using this type of analysis are based on the knowledge of well-known perform-
ance problems. Such tools are able to identify critical bottlenecks and help in optimiz-
ing applications by providing suggestions to developers [4, 5, 6].  

All mentioned tools involve developers changing a source code, re-compiling, re-
linking and restarting the program. They require a certain degree of knowledge and 
experience of parallel/distributed applications and hence are appropriate for develop-
ers rather than for such users as biologists, chemists, physicists or other scientists. To 
tackle these problems, it is necessary to provide tools that automatically perform pro-
gram optimizations. A good, reliable and simple optimization tool performing auto-
matic improvement could be profitable for non-expert users as well as for developers. 
Because of the complexity of the solution, there are not many tools that support auto-
matic application optimization during run time [7, 8]. Moreover, they lean towards 
automated tuning, which requires certain changes to the application. 

This paper addresses the problem of automatic and dynamic tuning of paral-
lel/distributed applications. Section 2 presents this approach showing its fundamental 
concepts. Section 3 describes a dynamic tuning environment called MATE. Section 4 
shows a catalog of tuning techniques that we investigated as part of our study. Finally, 
section 5 presents the conclusions of this study. 

2   Dynamic Performance Tuning 

The main goal of dynamic automatic tuning is to improve application performance by 
modifying its execution without recompiling or rerunning it. In this approach, the 
following steps can be distinguished: application monitoring, performance analysis 
and modifications of the running program. All of these must be performed automati-
cally, dynamically, and continuously during application execution. The dynamic 
analysis and introduced modifications enables adaptation of the application behavior 
to changing conditions in the application itself or in the environment. Dynamic tuning 
appears as a promising technique that exempts non-experts or programmers from 
some of the performance-related duties. The most useful dynamic tuning is that which 
can be used to successfully optimize a broad range of different applications. It would 
be desirable to tune any application even though its source code and application-
specific knowledge is not available. However due to incomplete information this kind 
of tuning is highly challenging and at the same time the most limited. The key ques-
tion is: what can be tuned in an “unknown” application? 
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2.1   Tuning Layers 

The answer to this key question can be found by investigating how an application is 
built. Each application consists of several layers: application-specific code, standard 
and custom libraries, operating system libraries, and hardware. An application is 
based on services provided by an operating system (OS). OS offers a set of libraries 
so that system users do not need to worry about low-level hardware details. The ap-
plication uses the system calls to perform hardware/system-specific operations. Be-
sides that, applications use standard libraries that support them with a variety of func-
tions, e.g. higher level I/O, mathematical, string manipulation functions and so on. 
Additionally, applications may use custom libraries that provide domain-specific 
functionality, e.g. communication libraries, numerical methods, programming frame-
works. These libraries insulate programmers from low level details as they offer a 
higher level of abstraction. Finally, each application contains application-specific 
implementation and consists of modules that solve a particular problem.  

Considering OS and library layers, the tuning process is based on well-known fea-
tures for them. By investigating particular OS and libraries it is possible to find their 
potential drawbacks and hence determine problems common to many applications. 
For each drawback, a tuning procedure can be identified. Optimizing the application 
code is the most complex and less reusable, due to the lack of application-specific 
knowledge. Each application implementation can be totally different and there may be 
no common parts, even though they may provide the same functionality. An applica-
tion can be tuned if there is knowledge of its internal structure. Therefore, to optimize 
the application layer, dynamic tuning should be supported in some way with certain 
information about the application.  

2.2   Approaches to Tuning 

Considering the available knowledge, we have defined two main approaches to tun-
ing: automatic and cooperative. In the automatic approach, an application is treated as 
a black-box, because no application-specific knowledge is provided by the program-
mer. This approach attempts to tune any application and does not require the devel-
oper to prepare it for tuning (the source code does not need to be adapted) and, there-
fore, it is suitable for tuning such layers as the operating system and libraries. We can 
find many general tuning procedures common to many applications. For each particu-
lar problem, all the necessary information, such as what should be measured, how it 
should analyzed, and what should be changed and when, can be provided automati-
cally. The cooperative approach assumes that the application is tunable and adaptable. 
This means that developers must prepare the application for the possible changes. 
Moreover, developers must define an application-specific knowledge that describes 
what should be measured in the application, what model should be used to evaluate 
the performance, and finally what can be changed to obtain better performance. The 
cooperative approach is suitable for the application tuning layer. 

2.3   Performance Analysis 

Performance analysis examines application behavior based on the collected measure-
ments, identifies performance bottlenecks, and provides specific solutions that over-
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come these problems. Application behavior can be characterized by an analytical 
performance model. Such a model may help to determine a minimal execution time of 
the application or predict the application performance. Such a model can contain 
formulas and/or conditions that recognize a bottleneck and facilitate determination of 
the optimal behavior. As input, a model needs the measurements extracted from the 
application execution. Based on these and applying adequate formulas, the perform-
ance model can estimate the desired application behavior, e.g. the optimal value of 
some parameter. Finally, the application can be tuned by changing the value of that 
parameter. 

To make the presented approaches to tuning (automatic and cooperative) homoge-
neous and to make optimization on the fly possible and effective, we concluded that 
the application knowledge should be described as the following terms:  

• measure point – a location where the instrumentation must be inserted  
• performance model – determines an optimal application execution time 
• tuning point – the code element that may be changed 
• tuning action – the action to be performed on a tuning point 
• synchronization – policy determining when the tuning action can be invoked. 

2.4   Dynamic Modifications of an Application 

All phases of improving the application performance must be done “on the fly”. To 
instrument the application without accessing the source code, the code insertion must 
be deferred till the application is launched. Modifications cannot require source code 
recompilation or restart. The technique that fulfills these requirements is called dy-
namic instrumentation. It permits insertions of a piece of code into a running program. 
Dynamic instrumentation was used in Paradyn [6] to build an automatic analysis tool. 
The Paradyn group developed a library called DynInst [9]. 

Considering DynInst’s possibilities and our definition of application knowledge, 
we determined tuning actions that can be applied on the fly to a tuning point. A tuning 
point can be any point found by DynInst in the application executable (e.g. function 
entry, function exit). We consider the following to be tuning actions: 

• function replacement – function calls are replaced with a call to another function 
• function invocation – an additional function call is inserted at a specified point 
• one-time function invocation – a specified function is invoked just once 
• function call elimination – a specified function call is eliminated 
• function parameter changes – the value of an input parameter is modified 
• variable changes – the value of a particular variable is modified.  

All modifications must be performed carefully to ensure that the application con-
tinues its execution correctly and does not crash. Therefore, each tuning action de-
fines the synchronization policy that specifies when the action can be invoked in a 
safe manner. E.g. to avoid reentrancy problems, race hazards or other unexpected 
behavior, a breakpoint can be inserted into an application at a specific location. When 
the execution reaches the breakpoint, the actual tuning action is performed.  
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3   MATE 

To provide dynamic automatic tuning of parallel/distributed applications we have 
developed a prototype environment called MATE (Monitoring, Analysis and Tuning 
Environment). For the purpose of our work we have made the assumption of targeting 
our tuning system to C/C++ parallel/distributed PVM [10] applications running on a 
UNIX platform. MATE performs dynamic tuning in three basic and continuous 
phases: monitoring, performance analysis and modifications. This environment dy-
namically and automatically instruments a running application to gather information 
about the application’s behavior. The analysis phase receives events, searches for 
bottlenecks, detects their causes and gives solutions on how to overcome them. Fi-
nally, the application is dynamically tuned by applying a given solution. MATE con-
sists of the following main components that cooperate among themselves, controlling 
and trying to improve the application execution: 

• Application Controller (AC) – a daemon-like process that controls the application 
execution on a given host (management of tasks and machines). It also provides the 
management of task instrumentation and modification. 

• Dynamic monitoring library (DMLib) – a shared library that is dynamically loaded 
by AC into application tasks to facilitate instrumentation and data collection. The 
library contains functions that are responsible for registration of events with all re-
quired attributes and for delivering them for analysis. 

• Analyzer – a process that carries out the application performance analysis, it auto-
matically detects existing performance problems “on the fly” and requests appro-
priate changes to improve the application performance. 

Figure 1 presents the MATE architecture in a sample PVM scenario. In this exam-
ple the PVM application consists of 3 tasks distributed on 2 different machines. When 
the Analyzer has been started, it distributes the AC to all machines where the applica-
tion is running to control all the tasks. Once the AC is distributed the Analyzer re-
ceives from it information about the configuration of a virtual machine. The perform-
ance analysis is based on tunlets. Each tunlet is a shared library that implements the 
analysis logic for one particular performance problem. A tunlet uses the Analyzer’s 
Dynamic Tuning API (DTAPI) to perform the performance monitoring and tuning of 
a program. Tunlets are passive components that drive the analysis by responding to a 
set of incoming events. The Analyzer provides a container that is responsible for 
managing a set of tunlets simultaneously. Tunlets provide the Analyzer with an initial 
set of measure points that are forwarded to all ACs. Next, the Analyzer asks the AC to 
start the application. The AC loads the shared monitoring library (DMLib) to the task 
memory that enables its instrumentation.  

During execution, the ACs manage the instrumentation of each task. The shared 
monitoring libraries are responsible for delivering registered events directly to the 
Analyzer. When an event record is received, the Analyzer notifies the corresponding 
tunlet and this tunlet in turn finds bottlenecks and determines their solutions. By ex-
amining the set of incoming event records, the tunlet extracts measurements and then 
uses the built-in performance model to determine the actual and optimal performance. 
If the tunlet detects a performance bottleneck, it decides whether the actual perform-
ance can be improved in existing conditions. If this is the case, it then asks the Ana-
lyzer to apply the corresponding tuning actions. A request determines what should be 
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changed (tuning point/action/synchronization) and it is sent to the appropriate in-
stance of AC.  

4   Tuning Techniques 

We conducted a number of experiments on parallel/distributed applications to study 
how our approach works in practice. We proved that running applications under the 
control of MATE may be effective, profitable, and the adaptation of the application 
behavior to the existing conditions results in performance improvements. All required 
information related to one particular performance problem is what we call a tuning 
technique. Each tuning technique describes a complete optimization scenario:  

• it specifies a potential performance problem of a parallel/distributed application  
• it determines what should be measured to detect the problem (measure points) 
• it determines how to detect the problem (performance model)  
• it provides a solution for how to overcome the problem (tuning point/action/sync).  

All experiments were conducted in a cluster of Sun UltraSPARC II workstations 
connected by LAN network. To investigate the profitability of dynamic tuning we 
used the following applications: (1) a set of synthetic master-worker programs; (2) 
Xfire – Forest Fire Propagation application [11], a computation-intensive program 
that simulates fireline propagation; (3) IS – NAS Integer Sort benchmark [12], a 
communication-intensive application that ranks integers using a bucket sort method. 

We organized tuning techniques into a catalog in accordance with the tuning ap-
proach and the layer at which a modification occurs. Each tuning technique is imple-
mented in MATE as a tunlet. Currently, we are focused on investigating tuning tech-
niques separately. The catalog available in MATE is the following: 
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Fig. 1. Architecture of the MATE dynamic tuning for PVM. 
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Operating system layer (Automatic approach):  
• Message aggregation – minimizes communication overhead by grouping sets of 

consecutive messages into large ones. The tuning consists of replacing operating 
system function calls that transmit data, e.g. write(), with their optimized custom 
version with an aggregation mechanism. In networks with non-ignorable latencies 
and applications that send small messages, the technique can produce noticeable 
time savings (up to 91% in the case of synthetic applications). 

• TCP/IP buffers – maximize the network transmission performance across high-
performance networks using TCP/IP-based protocol. This is done by setting the  
send and receive socket buffers to an optimal value that can be estimated calculat-
ing bandwidth delay product. The tuning action includes one time system call invo-
cation setsockopt() using SO_SNDBUF and SO_RCVBUF socket options. [13] re-
ports improvements ranging from 17% up to 500% for FTP transmissions. 

Standard library layer (Automatic approach): 
• Memory allocation – improves performance by optimizing memory allocations. 

Programs that make intensive use of memory may benefit from optimized pool-
based allocators if they perform a large number of small object allocations and de-
allocations. The tuning action replaces the standard allocator with the optimized 
pool allocator. The specialized pool allocators perform much better, giving up to 
60-70% experimenting with synthetic applications. 

Custom library layer (Automatic approach): 
• PVM communication mode – minimizes the PVM communication overhead by 

switching the messaging to point-to-point mode. The tuning action includes one-
time function call pvm_setopt(PvmRoute,PvmRouteDirect). Changing the com-
munication mode resulted in faster communication, up to 50% in synthetic applica-
tions and 17% in IS benchmark. The measured intrusion did not exceed 3,5% of the 
improved execution time. 

• PVM encoding mode – minimizes the PVM encoding overhead by skipping data 
encoding/decoding phase. The tuning action includes input parameter modification 
of pvm_initsend() that changes the encoding mode from default XDR to data raw. 
We observed important benefits from data raw encoding mode (up to 74% in syn-
thetic applications and up to 47% in IS benchmark). The intrusion reached up to 
2,8% of the total application execution time. 

• PVM message fragment size – selects the optimal size of message fragments to 
minimize the PVM communication time. The tuning action includes one-time func-
tion call pvm_setopt(PvmFragSize,OptFragSize). To calculate the optimal frag-
ment size, we used the experimentally deduced formula. This technique gave up to 
55% profit in synthetic applications and up to 28% in IS benchmark. The intrusion 
reached 4,9%. 

The PVM experiments that we conducted are described in more detail in [14]. 

Application layer (Cooperative approach): 
• Workload balancing – balances the amount of work that is distributed by the master 

to workers considering the capacities and load of the machines where the applica-
tion is running. During program execution, the simulation algorithm estimates the 
optimal workload. The tuning action changes the work factor by updating the vari-
able value in the master that adapts the work assignment. This technique produced 
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up to 50% profit in synthetic applications and 48% in Xfire. The overhead was 
small – about 2% of the improved execution time. 

• Number of workers – optimizes the number of workers assigned to perform a speci-
fied amount of work in the master/worker application. To calculate the optimal 
number of workers we used the performance model presented in [15]. The tuning 
action changes the number of workers by updating the variable value in the master 
process. We observed that changes to the number of workers could produce profits 
ranging from 20% to 300% in synthetic applications. 

5   Related Work 

The Autopilot [8] project bases on closed loop and allows parallel applications to be 
adapted in an automated way. It contains a library of runtime components needed to 
build an adaptive application. Autopilot provides a set of distributed performance 
sensors, decision procedures and policy actuators. The programmer can decide what 
sensors/actuators are necessary and then manually inserts them in the application 
source code. The toolkit includes fuzzy logic engine that accepts performance sensor 
inputs and selects resource management policies based on observed application be-
havior. Autopilot is similar to the MATE cooperative approach. However, it differs 
from the black-box approach where necessary measure and tuning points are decided 
and inserted dynamically and automatically. The Autopilot uses fuzzy logic to auto-
mate the decision-making process, while MATE is based on simple, conventional 
rules and performance models. Moreover, MATE is based on the dynamic instrumen-
tation where measure and tuning points are inserted on the fly while in Autopilot it is 
done manually.  

Active Harmony [7] is a framework that allows an application for dynamic adapta-
tion to network and resource capacities. In particular, Active Harmony permits auto-
matic adaptation of algorithms, data distribution, and load based on the observed 
performance. The application must contain a set of libraries with tunable parameters 
to be changed. Moreover, it must be Harmony-aware, that is, to use the API provided 
by the system. Active Harmony manages the values of the different tunable parame-
ters and changes them for better performance. The project focuses on the selection of 
the most appropriate algorithm. This is conceptually similar to the cooperative ap-
proach of MATE. However, it differs from the automatic method that treats applica-
tions as black-boxes and does not require them to be prepared for tuning. Active 
Harmony automatically determines good values for tunable parameters by searching 
the parameter value space using heuristic algorithm. Better performance is repre-
sented by a smaller value of the performance function, and the goal of the system is to 
minimize the function. MATE uses a distinct approach where performance models 
provide conditions and formulas that describe the application behavior and allow the 
system to find the optimal values. 

The AppLeS [16] project has developed an application-level scheduling approach. 
This project combines dynamic system performance information with application-
specific models and user specified parameters to provide better schedules. A pro-
grammer is supplied information about the computing environment and is given a 
library to facilitate reactions to changes in available resources. Each application then 
selects the resources and determines an efficient schedule, trying to improve its own 
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performance without considering other applications. MATE is similar to AppLeS in 
that it tries to maximize the performance of a single application. However, it focuses 
on the efficiency of resource utilization rather than on resource scheduling. 

6   Conclusions 

Parallel/distributed programming offers high computing capabilities to users in many 
scientific research fields. The performance of applications written for such environ-
ments is one of the crucial issues. It is therefore necessary to provide good, reliable 
and simple tools that automatically carry out tasks involving performance analysis of 
parallel/distributed programs and behavior optimization. Our goal was to investigate 
and prove that dynamic tuning works, is applicable and may be effective. We also 
wanted to demonstrate that it is possible to support a user with a specific functioning 
environment for automatic dynamic tuning. Our work concluded with the prototype 
environment called MATE. It includes the monitoring, analysis and modifications of 
an application on the fly without stopping, recompiling or rerunning the application. 
The MATE environment tries to adapt the application to dynamic behavior. The con-
clusion of this work is that although dynamic tuning is a complicated task, it is not 
only possible, but also provides real improvements in application performance. This 
methodology seems to be a promising technique for accomplishing the successful 
performance of applications with dynamic behavior.  
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