Abstract
Understanding and tuning memory system performance is a critical issue for most scientific programs to achieve reasonable performance on current high performance systems. Users need a data-centric performance measurement infrastructure that can help them understand the precise memory references in their program that are causing poor utilization of the memory subsystem. However, a data-centric performance tool requires the mapping of memory references to the corresponding symbolic names of the data structure, which is non trivial, especially for mapping local variables and dynamically allocated data structures. In this paper we describe with examples the algorithms and extensions implemented in the sigma environment for symbolic mapping of memory references to data structures.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.: A Portable Programming Interface for Performance Evaluation on Modern Processors. The International Journal of High Performance Computing Applications 14(3), 189–204 (2000)
DeRose, L.: The Hardware Performance Monitor Toolkit. In: Sakellariou, R., Keane, J.A., Gurd, J.R., Freeman, L. (eds.) Euro-Par 2001. LNCS, vol. 2150, pp. 122–131. Springer, Heidelberg (2001)
Luiz DeRose, K., Ekanadham, J.K.: Hollingsworth, and Simone Sbaraglia. SIGMA: A Simulator Infrastructure to Guide Memory Analysis. In: Proceedings of SC 2002, Baltimore, Maryland (November 2002)
DeRose, L., Reed, D.: Svpablo: A Multi-Language Architecture-Independent Performance Analysis System. In: Proceedings of the International Conference on Parallel Processing, August 1999, pp. 311–318 (1999)
Kim, S.W., Kuhn, B., Voss, M., Hoppe, H.-C., Nagel, W.: VGV: Supporting Performance Analysis of Object-Oriented Mixed MPI/OpenMP Parallel Applications. In: Proceedings of the International Parallel and Distributed Processing Symposium (April 2002)
Mellor-Crummey, J., Fowler, R., Marin, G., Tallent, N.: HPCView: A tool for top-down analysis of node performance. The Journal of Supercomputing 23, 81–101 (2002)
Miller, B.P., Callaghan, M.D., Cargille, J.M., Hollingsworth, J.K., Bruce Irvin, R., Karavanic, K.L., Kunchithapadam, K., Newhall, T.: The Paradyn Parallel Performance Measurement Tools. IEEE Computer 28(11), 37–46 (1995)
Mohr, B., Malony, A., Cuny, J.: TAU Tuning and Analysis Utilities for Portable Parallel Programming. In: Wilson, G. (ed.) Parallel Programming using C++, MIT Press, Cambridge (1996)
Pettersson, M.: Linux X86 Performance-Monitoring Counters Driver. Computing Science Department; Uppsala University - Sweden (2002), http://user.it.uu.se/~mikpe/linux/perfctr/
Wolf, F., Mohr, B.: Automatic performance analysis of hybrid mpi/openmp applications. Journal of Systems Architecture, Special Issue ’Evolutions in parallel distributed and network-based processing’ 49(10–11), 421–439 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
DeRose, L., Ekanadham, K., Sbaraglia, S. (2004). An Approach for Symbolic Mapping of Memory References. In: Danelutto, M., Vanneschi, M., Laforenza, D. (eds) Euro-Par 2004 Parallel Processing. Euro-Par 2004. Lecture Notes in Computer Science, vol 3149. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27866-5_18
Download citation
DOI: https://doi.org/10.1007/978-3-540-27866-5_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22924-7
Online ISBN: 978-3-540-27866-5
eBook Packages: Springer Book Archive