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Abstract. In the era of future embedded systems the designer is confronted with
multi-processor architectures both for performance and energy reasons. Exploit-
ing (sub)task-level parallelism is becoming crucial because the instruction-level
parallelism alone is insufficient.

The challenge is to build compiler tools that support the exploration of the task-
level parallelism in the programs. To achieve this goal, we have designed an
analysis framework to estimate the potential parallelism from sequential object-
oriented programs in Java.

Data-access analysis is one of the crucial techniques for estimation of the trans-
formation effects. We have implemented support for platform-independent data-
access analysis and profiling of Java programs. Herein, we focus on the technique
for design-time data-access analysis. It complements our earlier work on paral-
lel performance analysis. We demonstrate the feasibility and effectiveness of our
approach on a number of Java applications.

1 Context and Related Work

Data-access and communication analysis for parallel programs is an important topic,
as motivated in the abstract. We can identify two main categories: data-access analysis
for single-processor platforms with memory hierarchy and communication analysis for
parallel programs on multi-processor platforms.

We have been partially inspired by work of Ding and Zhong [4], who introduce
platform-dependent, run-time monitoring of data accesses. This approach is based on
compiler-directed instrumentation of single-threaded C programs. A similar approach
for data-access analysis has been introduced by Bormans et al. [5] They use design-time
data-access analysis to identify all possible data-accesses in the sequential C programs.
Afterwards, the executable specification is profiled and the data-access traces generated.
Leeman et al. [6] introduce a technique for data-access profiling for power estimation.
They use method-level data-access summaries, which are inserted into the program
code at design-time so that the run-time system can gather the data-access traces for
arbitrary data types. We distinguish from these approaches in the following way: first,
we have introduced the concept of parallel execution [15], which allows the designer to
perform parallel program analysis without the previous mapping to the target platform,
and second, we have introduced the concept of parallel communicating tasks [16] for
which we analyse the computation as well as communication cost.
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In the area of parallel systems, the research focus has been mainly on communi-
cation analysis and optimisation. These approaches usually require explicit communi-
cation between the tasks. Miller et al. [10] have introduced Paradyn - parallel perfor-
mance measurement tools. It focuses on the profiling and post-processing of profile
information for long-running large-scale programs written in high-level data-parallel
languages. Haake et al. [11] have introduced a similar approach, but they have imple-
mented profiling support for the Split-C programs with Active Messages. It is based
on fine grain communication profiling while the program traces are post-processed off-
line. Another approach, implemented by Vetter [9] analyses the performance of parallel
programs with message passing communication. The main contribution of this work is
in the classification of communication inefficiencies, i.e., it is a post-processing phase
of performance analysis that gives the designer concise and interpreted performance
measures. Chakrabarti, et al. [7] introduce communication analysis and optimisation
techniques for High-Performance Fortran programs. Even though the approach includes
performance analysis, the main focus is on the optimisation of the global program com-
munication. We distinguish from the previous approaches by introducing automated
data-access analysis support for high-level programming languages. Additionally, these
approaches are intended for a platform-specific performance analysis for particular ma-
chines, as opposite to our platform-independent analysis.

We believe that the approach introduced by Tseng [8] is one of the closest to
our work. The technique focuses on communication analysis for machine-independent
High-Performance Fortran programs, and provides application-oriented analysis of the
communication in the parallel programs. We, on the other hand, introduce design-time
data-access analysis for high-level concurrent object-oriented programs. Moreover, we
introduce the above mentioned concept of parallel-execution environment with support
for performance and data-access profiling.

2 Parallel-Performance Analysis Framework for Java

The proposed performance analysis tool is based on a concept of parallel-execution
time [15, 16], which allows one to abstract specific architectural features of the plat-
form. The concept is used to simulate parallel execution of program tasks while the
program is actually executed on the underlying platform, which does not need to be the
final target platform. The tools work as follows. Firstly, the program is automatically
transformed based on designer’s input constraints. This phase consists of two comple-
mentary transformations: parallel performance analysis and data-access analysis. Sec-
ondly, the parallel program execution is simulated and profiled. Finally, the profiling
information is analysed and interpreted to provide the designer with a more convenient
form of profiling output.

Herein, we focus on the design-time data-access analysis. The analysis identifies all
potential data-accesses which are then profiled at run time. For this purpose, we define a
data-access model (Figure 1) that consists of main execution thread, number of separate
threads and shared data. The implementation of the transformation passes as well as
intra and inter-procedural program analysis is based on the existing transformations in
the SOOT optimisation framework [1].
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3 Design-Time Data-Access Analysis

The data-access model (Figure 1) is used as a representation for modelling the accesses
to the data shared between different program tasks present in a sequential or parallel
program. Therefore, it serves as the conceptual base for the design-time data-access
analysis. The data-access model consists of the following components: main-program
thread, separate threads/methods and shared data. No cache memories are included yet
this extention is possible. All shared data belong to main method and they are stored
in the shared-data section. The separate methods require an amount of data to be read
from the shared-data section before they can proceed with execution. On the other hand,
the methods generate and write an amount of data to be stored back to the shared-data
section.

| Shared Data

Fig. 1. Data-access model: a shared memory communication model of an abstract architecture,
used in the data-access analysis to separate local and non-local accesses of separate threads 7.

The designer specifies a set of separate methods, and the analysis identifies all the
accesses performed on the shared data. To achieve this, it traverses the corresponding
parts of the program representation based on a method-call graph (Figure 2). In the case
of a polymorphic method call the analysis resolves all method call candidates while
only one of them is selected and profiled at run-time. The analysis identifies all the data
created outside the scope of a separate method, and accessed within its scope. Based
on the Java programming language specification [2], access to this shared data can be
performed only via method parameters (P - list of parameter for method M), class
members (F - list of class fields) and return statements (R,s). We can conceptually
split the data-access analysis into two parts: data-read and data-write analysis:

VM € SeparateMethods — analyseR(M ); analyseW (M)

The data-access analysis algorithms are implemented recursively because of their
iterative nature without manifest bounds on the exploration depth. The upper bound
of computation complexity of the algorithms is O(n X mp X kgr) for forward pass
and O(n x my x ky) for backward pass, where n is number of methods selected
by designer, mpr (myy) is number of methods accessed from selected methods for data
read (resp. write) and kg (ky ) is number of shared data which are read (resp. written)
within the scope of selected methods. However, we have not observed this worst-case
behaviour in analysis of tested programs.

The data-access analysis identifies and distinguishes three groups of data types:

— primitive type Tp = char, short, integer, long, float, double,
— reference type Tr = Object Re ference, ArrayReference,
— array type T4 = ArrayReference !.

! The Java arrays implement distinct concept within the Java language so we consider them a
special case of the reference type.
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Fig. 2. Example: the data-access analysis identifies all possible read and write accesses from
thread’s local scope to shared-data section, where MO() is the separate (or thread’s main) method.

3.1 Forward Data-Read Analysis

The data-read analysis identifies the read accesses to the shared data resulting in purely
forward recursive traversal of the program representation. The potential candidates
for the data-read access are only method parameters and class members. The anal-
ysis consists of the following steps: analysis of method calls for own class methods
(ClassMethods), analysis of method parameters (Py;) and analysis of class members
(Fyr) accessed within each separate method.

ana lyseR(M) :

if (M ¢ SeparateMethods) — M. = clone(M)

VY M':isInvokedIn(M,M') AisClassMethods(M, M') — analyseR(M")

V' Par i isReadIn(M, Py) — analyseTypeR(Pur)

YV FuyisReadIn(M, Far) — analyseTypeR(Fi); FieldList.identify(Far, Me)

Method clone(M) creates a clone M, of given method M with unique thread iden-
tification tag. Each top-level method and sub-graph of the method-call graph accessed
from this method is identified by an identification tag. Method M’ is analysed if it is
invoked with M method body (isInvokedIn(M, M')) and it is a method implemented
with the same class (M’ € ClassMethods).

Method FieldList.identify(Field, Method) identifies and resolves given class
member within global program scope. The analysis uses this global information to re-
solve accesses to all members of given classes. Thus, it removes aliasing of the members
which is introduces by assignments in different methods of the program. This alias re-
moval results in minimal and realistic data-access patterns. As shown below, the same
method is used for the data-write analysis that results in accurate information on read
and write accesses to all the class members.

The algorithm enters analyseTypeR(Pys) method for each of the method param-
eters Pys and class members Fy; used within M method body (isReadIn(M, Py)).
The method analyses the given argument based on its type (primitive 1'p, reference Tr
or array T'4) as follows.

ana lyse TypeR(Pur) :
if (ass ignedTo(Pys, Pur)) — analyseTypeR(Pyy)
Zf (P]V[ € Tp) — addeType(Mc, P]u,TP)
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if (Pu € Tr) — addRdType(Me, Pr, Tr)
VM’ :isClassMethods(Pa, M') AisInvokedIn(M, M) — analyseR(M")
if (P € Ta) — VEum = Puylidz] @ EaisReadIn(M) — analyseTypeR(E);
addRdType(Me, Enr,Ta); ArrayList.identify(Pur, Me);

Call to addRdType(Method, Parameter, Type) does the actual code annotation
for later use in other phases of program transformation. The method adds parameter-
specific annotation to the code segment of cloned method (M..). The annotation consists
of parameter name (P;) and type (I'p, T'r or T'4). Each data (parameter or member)
is assigned a unique global identification tag that it is identifiable within the global
program scope, i.e., for all the separate methods.

In the case of array data type (7'4), the analysis annotates all array elements ()
accessed withing the method body (isReadIn(M, Eyr)). Thus, the annotation made
by method addRdType(M., Err, T4) includes also the actual array index, e.g., if the
annotated program is later profiled the actual index value is identified, which results in
a detailed data-access trace for the arrays.

Method ArrayList.identify(Array, Method) has similar usage as FlieldList
method yet it resolves even method-local array data. This way, the analysis keeps global
information on the accesses to individual array elements that results in alias removal on
the level of array elements.

3.2 Backward Data-Write Analysis

The data-write analysis traverses the representation forward until it finds any write ac-
cess to a shared data then it starts a backward traversal to identify the origin of the data
assignment. Furthermore, it inspects all potential accesses to this data. Thus, it uses
the forward analysis to resolve all read accesses to this newly identified data which is
eventually written into shared-data section. The potential candidates are non-primitive
method parameters, class members, and return statements.

ana lyseW (M) :

if (M ¢ SeparateMethods) — M. = clone(M)

¥V M’ :isInvokedIn(M,M') N M' € ClassMethods — analyseW (M)

YV Par:isWrittenIn(M, Py) — analyseTypeW (Par)

YV Fa cisWrittenIn(M, Far) — analyseTypeW (Far); FieldList.identify(Far, M)
if (hasReturn(M)) — Ry = returnedFrom(M);analyseTypeW (Rur)

The method analyseTypeW (Pyy) is defined as follows.
ana lyse TypeW (Pyy) :
if (Py € Tp) — DataWriteType(M., P, Tp)
if (PM S TR) —
YV M':isClassMethods(Pyr, M') N isInvokedIn(M, M') — analyseW (M")
if (assignedF'rom(Pyy, Pr) A findOrigin(Py,)) — addWrType(M.., Py, Tr)
Lf (PM c TA) —



Design-Time Data-Access Analysis for Parallel Java Programs 211

if (assignedFrom(Pys, Pu) A findOrigin(Pyy)) — addWrType(M., Pu, Ta)

YV En = Puylida) : asignedFrom(Ey, Ea) A findOrigin(E)y,) :
addWrType(M., Err, Ta); ArrayList.identi fy(Par, M.);
analyseTypeR(En); analyseTypeW (Er)

Method findOrigin(Pas) is called for each assignment (assignedFrom(P;;,
Pyr)) of a reference, array and array element . Based in the result of its analysis an
appropriate method annotation is made (addW rType(M., Py, Type)).

fin dOrigin(Par) :

if (isDefLocally(Pyr)) — return(true)

if (isDefByMember(Pyr) A assignedFrom(Py,, Py)) —
analyseTypeR(Py,); analyseTypeW (Par); return(false)

if (isDefByParameter(Py)) —
if(M € SeparateMethods) — return(false)
M' = getCaller(M); Py, = getParam(Pyr, M'); return(findOrigin(Py;))

Method findOrigin(Pyr) traverses the program representation backwards to search
for the original assignment of the given data (Ppy). It returns true only in case of true
local assignment, i.e., if the given data was created locally within the scope of given
separate method.

In the case of definition by parameter (is De f By Parameter(Pyr)), if the analysis
operates in the representation of a particular separate method (Separate M ethods) the
returned value is false and no further analysis is needed. This situation corresponds to
assignment from input parameter of the given separate method to its output data, which
means that no actual read and/or write access is performed.

Design-time data-access analysis traverses all potential method calls in the sub-
graph of the method-call graph while performing alias checks to isolate given data
structures and thus provide accurate information on potential data accesses in the pro-
gram.

4 Experimental Results

In experiments accomplished we have focused on the usability of the proposed frame-
work [16]. We have used the host platform and corresponding memory model[3] to
obtain the absolute timing information for program execution and data communication
while the main interest of our platform-independent program characterisation is in the
relative comparison between them. The data communication timing is calculated as a
product of the number of memory accesses and data-access timing for the above refer-
enced memory model.

For the evaluation of the performance analysis framework we have used a 3D ap-
plication [13], an MPEG video player [12] and the following set of applications from
the Java Grande Forum Thread Benchmark Suite [14]: JGFCrypt, JGFSparseMatMult,
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Table 1. Interpreted analysis results: programxcq;sq (X - number of threads, ca/sa - concur-
rent or sequential data-access mode), communication time, total-execution time and speedup for
zero/page/random-mode communication.

program |Tcypg [ms]|Tc_,."d[ms]|TT’pg [ms]|TT_,.nd[ms]|| So |Spg|Smd

3Dica 3.44 30.9 1519 1546 [[2.18]2.18] 2.15
3Disa 9.28 83.6 1525 1600 ||2.182.18]2.07
MPEG, | 962 [ 8653 | 19679 | 27370 [[1.97]1.88]1.35
Crypta 204 1836 2979 4611 [1.82[1.70[ .10
Cryptica | 102 918 1726 2542 [3.12[2.93] 1.9
Cryptasa | 306 2754 1930 4378 |[3.12]2.62| 1.16
Matrizs [ 1800 1980 11947 [ 29954 [[1.98[1.68]0.67
Matrizaca| 800 7208 6007 12415 |[3.85(3.34] 1.62
Matrizasa| 2400 21624 7607 26831 ||3.85[2.63]0.75
RayT, 925 8320 55391 [ 62786 [[1.99]1.96]1.73
RayTica | 465 4183 27863 | 31581 [[3.973.90]3.44
RayTusa | 1385 12466 | 28783 | 39864 ||3.97]3.77)2.73
MCarloy 81 729 27359 [ 28007 [[1.85]1.84]1.80
MCarlosea| 405 365 16193 | 16517 [[3.12[3.11]3.05
MCarlossa| 120 1095 16272 | 17247 ||3.12[3.09 2.92

JGFRayTracer and JGFMonteCarlo. The results of the performance analysis can be in-
terpreted as follows (Table 1): data-communication time (1) is calculated separately
for concurrent and sequential data accesses to the shared-data section (programx cq/sa)-
The total execution time (777) is a sum of execution time and data-communication time.
Thus, the achievable speed-up ranges from the speedup for random data-access model
(Srna) to the speedup for page-mode data-access model (5y,4). For comparison reasons
we present also speedup for an ideal reference (Sy - no data-communication overhead).

An example of application with heavy data communication is the MPEG video
player. Based on the interpretation of the analysis results (Table 1, M PEG5), we see
that in case of random data-access mode, the communication corresponds to 31% of
the total execution time. Thus, compared to the ideal reference (Sy = 1.97), the realistic
speed-up is considerably degraded (S;,,q = 1.35). Another example of such an applica-
tion is JGFSpareMatMult (Table 1, Matrixz,). On the other hand, an example of less
data dominated application is the JGFMonteCarlo benchmark programs. Even though,
the program complexity is similar the communication time ranges from 0.3 - 6.3%.
Thus, the final speedup (ranging from 2.92 to 3.11, with reference speedup of 3.12)
does not depend on the data-communication as heavily as in the previous example.

The execution time of the data-access analysis tool ranges from 245 ms for JGFS-
parseMatMult program (2 analysed methods and 11 identified data accesses) to 33798
ms for MPEG video player (41 methods and 773 data accesses), executed using Sun
J2SDK1.3.1 on desktop PC with Pentium-4 1.6GHz, 640MB RAM. Typical execution
time is in the range of 1 to 4 seconds (programs with 20 to 60 methods and 10 to 140
identified accesses).
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Conclusions

We have introduced the design-time data-access analysis which is a crucial part of our
transformation framework for exploration of task-level parallelism in sequential object-
oriented programs. The main difference of our approach compared to related work is
the introduction of the design-time data-access analysis for the programs with shared-
memory communication model. To increase the usability of our technique we have
implemented automatic tool that performs the data-access analysis on Java programs.
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