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Abstract. This paper is devoted to scheduling a large collection of inde-
pendent tasks onto a distributed heterogeneous platform, which is com-
posed of a set of servers. Each server is a processor cluster equipped
with a file repository. The tasks to be scheduled depend upon (input)
files which initially reside on the server repositories. A given file may well
be shared by several tasks. For each task, the problem is to decide which
server will execute it, and to transfer the required files to that server
repository. The objective is to find a task allocation, and to schedule the
induced communications, so as to minimize the total execution time. The
contribution of this paper is twofold. On the theoretical side, we establish
a complexity result that assesses the difficulty of the problem. On the
practical side, we design several new heuristics, including an extension
of the min-min heuristic to such a decentralized framework, and several
lower cost heuristics, which we compare through extensive simulations.

1 Introduction

In this paper, we are interested in scheduling independent tasks onto collections
of heterogeneous clusters. These independent tasks depend upon files (corre-
sponding to input data, for example), and difficulty arises from the fact that
some files may well be shared by several tasks. Initially, the files are distributed
among several server repositories. Because of the computations, some files must
be replicated and sent to other servers: before a task can be executed by a server,
a copy of each file that the task depends upon must be made available on that
server. For each task, we have to decide which server will execute it, and to
orchestrate the file transfers, so that the total execution time is kept minimum.

This paper is a follow-on of two series of work, by Casanova, Legrand,
Zagorodnov, and Berman [3] on one hand, and by Giersch, Robert, and Vivien [5]
on the other hand. In [3], Casanova et al. target the scheduling of the tasks typi-
cally submitted to APST, the AppLeS Parameter Sweep Template [1]. Casanova
et al. have considered three heuristics designed for completely independent tasks
(no input file sharing) that were proposed in [6]. They have modified these three
heuristics (originally called min-min, max-min, and sufferage in [6]) to adapt
them to the additional constraint that input files are shared between tasks. The
number of tasks to schedule is expected to be very large, and special attention
should be devoted to keeping the cost of the scheduling heuristics reasonably low.
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In [5], Giersch et al. have introduced several new heuristics, which are shown to
perform as efficiently as the best heuristics in [3] although their cost is an order
of magnitude lower.

However, all the previous references restrict to a very special case of the
scheduling problem: they assume the existence of a master processor, which
serves as the repository for all files. The master distributes the files to the pro-
cessors, so that they can execute the tasks. This master-slave paradigm has a
fundamental limitation: communications from the master may well become the
true bottleneck of the overall scheduling scheme.

In this paper, we deal with the most general instance of the scheduling prob-
lem: we assume a fully decentralized system where several servers, with different
computing capabilities, are linked through an interconnection network. To each
server is associated a (local) data repository. Initially, the files are stored in
one or several of these repositories (some files may be replicated). After having
decided that server Si will execute task Tj , the input files for Tj that are not
already available in the local repository of Si will be sent through the network.
Several file transfers may occur in parallel along disjoint routes.

The contribution of this paper is twofold. On the theoretical side, we establish
in Section 3 a complexity result that assesses the difficulty of our scheduling prob-
lem. On the practical side, we design several heuristics. The first heuristic is the
extension of the min-min heuristic to the decentralized framework (Section 4).
The next heuristics aim at retaining the good performances of the min-min vari-
ants while reducing the computational cost by an order of magnitude (Section 5).
We compare all these heuristics through extensive simulations (Section 6). We
start by describing in Section 2 the specifications of our scheduling problem.

Due to space limitations, we refer to [4] for missing details and proofs.

2 Framework

Tasks and files. The problem is to schedule a set of n independent tasks T =
{T1, T2, . . . , Tn}. The weight of task Tj is tj , 1 ≤ j ≤ n. The execution of each
task depends upon one or several files, and a given file may be shared by several
tasks. Altogether, there are m files in the set F = {F1, F2, . . . , Fm}. The size of
file Fi is fi, 1 ≤ i ≤ m.

We use a bipartite graph G = (V , E) to represent the relations between files
and tasks. The set of nodes in the graph G is V = F ∪ T , and there is an edge
ei,j : Fi → Tj in E if and only if task Tj depends on file Fi. Each node in
V = F ∪ T is weighted by fi or tj .

Platform graph. The tasks are scheduled and executed on an heterogeneous
platform composed of a set of servers, which are linked through a platform
graph P = (S,L). Each node in S = {S1, . . . , Ss} is a server, and each link
li,j ∈ L represents a communication link from server Si to server Sj . We assume
that the graph P is connected, i.e., that there is a path linking any server pair.

Each server Si = (Ri, Ci) is composed of a local repository Ri, associated
to a local computational cluster Ci. The files are stored in the repositories. We
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assume that a file may be duplicated, and thus simultaneously stored on several
repositories. We make no restriction on the possibility of duplicating the files,
which means that each repository is large enough to hold a copy of all the files.

For cluster Ci to be able to process task Tj , repository Ri must hold all files
that Tj depends upon. Therefore, before Ci can start the execution of Tj, the
server Si must have received from the other server repositories all the files Fk

such that ek,j ∈ E , and which were not already stored in Ri. For communica-
tions, we use the one-port model: at any given time-step, there are at most two
communications involving a given server, one sent and the other received.

As for the cost of communications, first consider the case of adjacent servers
in the platform graph. Suppose that server Si sends the file Fj to another server
Sk, through the network link li,k = l. We denote by bl the bandwidth of the link
l, so that fj/bl time-units are required to send the file. Next, for communica-
tions involving distant servers, we use a store-and-forward model: we route the
file from one server to the next one, leaving a copy of the file in the repository
of each intermediate server. The communication cost is the sum of the costs of
the adjacent communications. Leaving copies of transferred files on intermediate
servers multiplies the potential sources for each file and is likely to accelerate
the processing of the next tasks, hence the store-and-forward model seems quite
well-suited to our problem. Finally, we assume no communication time between
a cluster and its associated repository: the cost of intra-cluster messages is ex-
pected to be an order of magnitude lower than that of inter-cluster ones.

As for computation costs, each cluster Ci is composed of ci heterogeneous
processors Ci,k, 1 ≤ k ≤ ci. The speed of processor Ci,k is si,k, meaning that
tj/si,k time-units are needed to execute task Tj on Ci,k. A coarser and less precise
approach is to view cluster Ci as a single computational resource of cumulative
speed

∑ci

k=1 si,k. This is the approach used in all of our heuristics when the
completion time of a task on a server needs to be evaluated.

Objective function. The objective is to minimize the total execution time. The
execution is terminated when the last task has been completed. The schedule
must decide which tasks will be executed by each processor of each cluster, and
when. It must also decide the ordering in which the necessary files are sent from
server repositories to server repositories. We stress two important points: (i) some
files may well be sent several times, so that several clusters can independently
process tasks that depend upon these files, and (ii) a file sent to some repository
remains available for the rest of the schedule (if two tasks depending on the same
file are scheduled on the same cluster, the file must only be sent once).

We let TSFDR(G,P) (Tasks Sharing Files from Distributed Repositories)
denote the optimization problem to be solved.

3 Complexity

Most scheduling problems are known to be difficult [7]. The TSFDR optimiza-
tion problem is no exception. Heterogeneity may come from several sources: files
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or tasks can have different weights, while clusters or links can have different
speeds. Simple versions of these weighted problems already are difficult. For in-
stance the decision problem associated to the instance with no files and two
single-processor clusters of equal speed already is NP-complete (it reduces to
the 2-Partition problem as tasks have different weights). Conversely, mapping
equal-size files and equal-size tasks on a single server platform with two het-
erogeneous processors and two links of different bandwidths is NP-hard too [5].
Even in the un-weighted version of our problem, where all files have same size
and all communication links have same bandwidth, to decide where to move the
files so as to execute the tasks is a difficult combinatorial problem due to file
sharing. This is what formally state Definition 1 and Theorem 1.

Definition 1 (TSFDR-Move-Dec(G,P,K)). Given a bipartite application
graph G = (F ∪ T , E), a platform graph P = (S,L), assuming: (i) uniform
file sizes (fi = 1), (ii) homogeneous interconnection network (bi = 1), and (iii)
zero processing time (ti = 0 or sj = +∞); and given a time bound K, is it
possible to schedule all tasks within K time-steps?

Theorem 1. TSFDR-Move–Dec(G,P,K) is NP-complete.

4 Adapting the min-min Scheme

Due to the presence of weights in tasks, in files, and in the platform graph,
approximation algorithms are not likely to be feasible. Hence, we look for poly-
nomial heuristics to solve TSFDR, and we will compare these heuristics through
extensive simulations. Considering the work of Casanova et al. [3] for master-
slave systems with a single server, we start by adapting the min-min scheme.

The principle of the min-min scheme is quite simple:

While there remain tasks to be scheduled do
1. for each task Tk that remains to be scheduled and each processor Ci,j ,

evaluate the Minimum Completion Time (MCT) of Tk if mapped on Ci,j ;
2. pick a couple (Ci,j , Tk) with minimum MCT and schedule Tk on Ci,j .

The problem then is to evaluate a task MCT. When trying to schedule a task
on a given processor, one has to take into account which required files already
reside in the corresponding repository, and which should be brought from other
servers. One can easily determine which communications should take place. But
scheduling these communications is an NP-complete problem in the general case.

Scheduling the communications. We deal with the situation where all commu-
nications have the same destination (namely the server that will execute the
candidate task Tk). In the 1-port model, if the routing in the platform graph
is not fixed, we show that scheduling a set of communications is already NP-
hard [4] in our context. As the routing is usually decided by table lookup, one can



250 A. Giersch, Y. Robert, and F. Vivien

assume the routing to be fixed. But when trying to schedule the communications
required for a task Tk, one must take into account that the communication links
are already used at certain time slots due to previously scheduled communica-
tions. Even under a fixed routing, this also leads to an NP-complete problem [4].

Therefore, we rely on heuristics to schedule the necessary communications.
A first idea would be to memorize for each link the date and length of all com-
munications already scheduled, and to use an insertion scheduling scheme to
schedule new communications. This scheme should be rather precise but may be
very expensive. A second idea is to use a simple greedy algorithm which schedules
new communications as soon as possible but always after communications using
the same links. In both cases we assume a fixed routing. If a file is available on
several servers, we heuristically decide to bring it from the closest server.

Complexity of the adapted min-min scheme. The complexity of the whole min-
min heuristic is O(n2s∆T (s + ∆P + log(∆T )) + n max1≤i≤s ci), when using the
greedy communication scheduling heuristic, if we denote by ∆T the maximum
number of files that a task depends upon, and by ∆P the diameter of the plat-
form graph. Of course, the complexity is larger with the insertion scheduling
scheme. The last term in the expression comes from scheduling tasks on clus-
ters. Indeed, once the communications are scheduled, on each cluster, we greedily
schedule the tasks on the available processors. Among the tasks of lowest avail-
ability date, we take the largest one and schedule it on the processor on which
it will reach its MCT.

The sufferage heuristic is a variant of min-min which sometimes delivers
better schedules, but whose complexity is slightly greater [3, 5, 4].

5 Heuristics of Lower Complexity

As appealing as the min-min scheme could be because of the quality of the
scheduling it produces [5], its computational cost is huge and may forbid its use.
Therefore, we aim at designing heuristics which are an order of magnitude faster,
while trying to preserve the quality of the scheduling produced.

The principle of our heuristics is quite simple. The min-min scheme is especially
expensive as, each time it attempts to schedule a new task, it considers all
the remaining tasks and compute their MCTs. On the opposite, we worked on
solutions where we only consider a single task candidate per cluster. This leads
to the following scheme:

While there remain tasks to be scheduled do
1. for each cluster Ci pick the “best” candidate task Tk that remains to be

scheduled;
2. pick the “best” couple (Ci, Tk) and schedule Tk on Ci.

The whole heuristic then relies on the definition of the “best” candidate. For
that, we design a cost function that we use as an estimate of the MCT of a
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task on a given server. Using the results of [5], we simply defined the cost of
a task Ti on a server Sj as the sum of the time needed to send the required
files to Sj (communication time), plus the time needed by the cluster Cj to
process the task, when the cluster is seen as a single computational resource
(computation time). The communication time can be evaluated using either of
the two heuristics described in Section 4. In practice, we approximate it by
using either the “sum” of all the communications required (over-approximation
by sequentialization of all communications) or its “max” (under-approximation
by considering all communications to take place in parallel).

Static heuristics. In our static heuristics, for each cluster we first build a list
of all tasks sorted by increasing cost function. Then, each time we schedule
a new task: 1) we define as local candidate for cluster Ci the task which has
lowest cost on Ci and has not already been scheduled; 2) among all the local
candidates we take the one of lowest cost and we assign it on the correspond-
ing cluster; 3) we schedule the necessary communications and the computation
as we did for the min-min scheme. The overall complexity of this scheme is:
O(n|E| + s3 + sn logn + n∆T (∆P + log(∆T )) + ms2 + n max1≤i≤s ci) (with
greedy communication scheduling) which is an order of magnitude less than the
complexity of the min-min scheme: we no longer have a n2 term.

In the MCT variant of our static heuristic we make two modifications to our
scheme. First, if on one cluster there is a task which only depends on files residing
on the corresponding server, it becomes the local candidate (whatever its cost).
Then, we compute the actual MCT of each local candidate (only on its candidate
cluster) and we pick the task of lowest MCT. The two modifications only lead
to an additional term of O(ns∆T ) in the complexity.

Dynamic heuristics may seem a better approach than static ones. Indeed, as
scheduling decisions are taken, files are copied between servers and the original
cost estimate become less pertinent. Hence the desire to use dynamically updated
costs to drive the mapping decisions. But the updates should be kept as compu-
tationally cheap as possible. Hence, each time a file Fj is duplicated we update
only the costs(Ci, Tk) where Tk depends on Fj . Using a clever data structure
(see [4] for details) the overall complexity of maintaining dynamic costs is only
O(s3 + sm(1 + u)) where u = 1 when we over-approximate the communications
and u = ∆T when we under-approximate them.

In the dynamic1 heuristics, for each cluster we maintain a heap of dynamic
costs, and the selection of the local candidate for each cluster is cheap. Then,
the overcost due to the dynamicity is only: O(sm(1 + u) + sm log n + ns∆T ).

Another way of decreasing the complexity of the selection of the local can-
didate is to select, on each server, k tasks of lowest costs, instead of only one
task. Such a selection can be realized in linear time in the worst case [2]. The
dynamic2 heuristic uses this approach. Then, the overcost due to the dynamicity
is: O(sm(1 + u) + n

k (ns + ks log(ks)) + ns∆T ). For the simulations described in
the next section, we used k = 10.
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6 Simulation Results

In order to compare our heuristics, we have simulated their executions on ran-
domly built platforms and graphs. We have conducted a large number of exper-
iments, which we summarize in this section.

Simulation framework. We generated three types of server graphs (7 servers):
clique, random tree, or ring. Each server is associated a cluster of 8, 16, or 32 pro-
cessors. The processors speeds and communication links bandwidths were chosen
from a set of values recorded on real machines. These values were normalized
so as to model three communication-to-computation cost ratios: computation
intensive, communication intensive, and intermediate. For the tasks graphs, we
generated four types of graphs, from very regular ones with lots of file sharing,
to fully randomly built ones. The initial distribution of files to server is built
randomly. A fully detailed description of the simulations can be found in [4].

Results. We report the performance of our heuristics together with their cost
(i.e., their CPU time). The randommap heuristic randomly picks the local candi-
date (the same for all clusters) but uses the same optimizations and scheduling
schemes than the other heuristics. Table 1 summarizes all the simulations, i.e.,
36,000 random tests (1,000 tests over each combination of task graph, platform
graph, and communication-to-computation cost ratio). For each test, we com-
pute the ratio of the performance of all heuristics over the best heuristic for
the test, which gives us a relative performance. The best heuristic differs from
test to test, which explains why no heuristic in Table 1 can achieve an aver-
age relative performance of 1. The optimal relative performance of 1 would be
achieved by picking, for any of the 36,000 tests, the best heuristic for this par-
ticular case. (The relative cost is computed along the same guidelines, using the
fastest heuristic.)

The basic versions of our heuristics are far quicker than the min-min versions
but at the cost of a great loss in the quality of the schedules produced (two times
worse). The MCT variant greatly improves the quality of our heuristics (this is
exemplified by randommap) while their costs remain very low. For example, the

Table 1. Relative performance and cost of the heuristics: basic versions, MCT variants,
and MCT variants with communication scheduling with insertion scheduling. Standard
deviations are in parentheses (for relative costs, all are between 128% and 211%).

Heuristic Basic version MCT variant MCT variant + insert.

Perf. Cost Perf. Cost Perf. Cost

min-min 1.14 (± 7.9%) 31,050 - - 1.08 (± 7.5%) 61,771
sufferage 1.16 (± 14%) 33,985 - - 1.07 (± 12%) 77,991
static 2.20 (± 33%) 16 1.46 (± 23%) 44 1.18 (± 11%) 56
dynamic1 2.32 (± 37%) 42 1.35 (± 17%) 67 1.11 (± 8.8%) 77
dynamic2 2.42 (± 39%) 310 1.92 (± 36%) 82 1.40 (± 31%) 90
randommap 141 (± 317%) 11 1.32 (± 18%) 41 1.08 (± 6.9%) 53
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MCT variant of dynamic1 produces schedules which are only 19% longer than
those of min-min. . . but it produces them 460 times more quickly. We also ran the
heuristics with the insertion scheduling heuristic for communication scheduling
(rather than with the greedy scheduling as previously). As predicted, the quality
of results significantly increased. The overhead is prohibitive for the min-min
variants (these versions only differ from the original by the insertion scheduling
scheme). Surprisingly, this overhead is reasonable for our heuristics. For example,
this version of dynamic1 produces schedules which are 3% shorter than those of
the original min-min. . . and it produces them 400 times more quickly.

7 Conclusion

In this paper, we have dealt with the problem of scheduling a large collection
of independent tasks, that may share input files, onto collections of distributed
servers. On the theoretical side, we have shown a new complexity result, that
shows the intrinsic difficulty of the combinatorial problem of deciding where
to move files. On the practical side, our contribution is twofold: 1) we have
shown how to extend the well-known min-min heuristic to this new framework,
which turned out to be more difficult than expected; 2) we have succeeded in
designing a collection of new heuristics which have reasonably good performance
but whose computational costs are orders of magnitude lower than min-min:
our best heuristic produces schedules whose makespan is only 1.1% longer than
those of the best min-min variant, and produces them 585 times faster than the
quickest min-min variant.

We plan to deploy the heuristics presented in this paper for a large medical
application, with servers in different hospitals in the Lyon-Grenoble area, and we
hope that the ideas introduced when designing our heuristics will prove useful
in this real-life scheduling problem.
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