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Abstract. Data mining applications are composed of computing-intensive proc-
essing tasks, which are natural candidates for execution on high performance, 
high throughput platforms such as PC clusters and computational grids. Be-
sides, some data-mining algorithms can be implemented as Bag-of-Tasks (BoT) 
applications, which are composed of parallel, independent tasks. Due to its own 
nature, the adaptation of BoT applications for the grid is straightforward. In this 
sense, this work proposes a scheduling algorithm for running BoT data mining 
applications on grid platforms. The proposed algorithm is evaluated by means 
of several experiments, and the obtained results show that it improves both 
scalability and performance of such applications. 

1   Introduction 

Knowledge discovery in databases is the non-trivial process of identifying valid, 
novel, potentially useful, and ultimately understandable patterns in data [1]. Data 
Mining (DM) is a step in this process that centers on the automated discovery of new 
facts and relationships in data. DM consists of three basic steps: data preparation, 
information discovery and analysis of the mining algorithm output. All these steps 
exploit huge amounts of data and are computationally expensive. In this sense, several 
techniques have been proposed to improve the performance of DM applications, such 
as parallel processing [3] and implementations based on cluster of workstations [4].  

A computational grid, or simply grid for short, provides access to heterogeneous 
resources in a geographically distributed area, allowing the integration of these het-
erogeneous and distributed resources into a unified computer resource. Computational 
grids are usually built on top of specially designed middleware platforms, the so-
called grid platforms. Grid platforms enable the sharing, selection and aggregation of 
a variety of resources including supercomputers, servers, workstations, storage sys-
tems, data sources and specialized devices that are geographically distributed and 
owned by different organizations [5].  

Among the most suitable applications for running on a grid are the Bag-of-Tasks 
(BoT) applications, which are parallel applications whose tasks are independent of 
each other. Examples of BoT applications include Monte Carlo simulations, massive 
searches (such as key breaking), parameter sweeps, image manipulation, and data 
mining. In this work, we analyze the use of computational grids for data mining. 
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BoT data mining applications can present scalability problems when executing on 
the grid. In this paper, we define scalability as the ability of a grid platform to reduce 
the total execution time of a BoT application as the number of machines added to the 
grid increases, given that the number of tasks of the BoT application is larger than the 
number of machines in the grid. This paper proposes a scheduling algorithm that 
improves scalability of BoT data mining applications on the grid, by grouping sets of 
independent tasks into larger ones, which are executed on grid machines. For the 
experimental results we used the MyGrid platform [6], which is specially designed to 
run BoT applications.   

The remaining of this paper is organized as follows: Section 2 approaches the em-
ployed data mining algorithm (K-Means) in the context of BoT applications. This 
section also presents experimental results related with the scalability problem to be 
tackled by our scheduling algorithm. This algorithm is described and evaluated in 
Section 3. Finally, Section 4 presents the conclusions and points out some future 
work.    

2   Running Data Mining Algorithms as BoTs Applications 

Some recent works suggest that grids are natural platforms for developing high per-
forming data mining services [7,8,9]. For instance, Orlando et al. [8] describe the 
application of two data mining algorithms in the Knowledge Grid [7]: DCP and K-
means. The former algorithm enhances the popular Apriori Algorithm [10], which is 
an algorithm for frequent set counting, whereas the latter one is a clustering algo-
rithm. In this work, we have also employed the K-Means algorithm (briefly described 
in Section 2.1) implemented as a BoT application on the MyGrid platform (depicted 
in Section 2.2). Section 2.3 reports experimental results that illustrate the need for a 
specific scheduling algorithm specially designed to run BoT applications.  

2.1   K-Means Algorithm 

Clustering algorithms involving the calculation of the mean (centroid) of each cluster 
are often referred to as K-means algorithms [2]. Basically, these algorithms partition a 
dataset of n objects into K clusters. The K value, which represents the number of 
clusters, is specified by the user. These algorithms try to minimize the error sum of 
distances (e.g. Euclidean) between objects of a cluster and its centroid. The imple-
mentation employed in our work can be summarized as follows: 

1. Generate a random initial partition of objects into K nonempty clusters; 
2. Compute the cluster centroids (mean vectors) of the current partition; 
3. Assign each object to the cluster with the nearest centroid; 
4. If the convergence criterion has been met, stop. Otherwise, go to step 2. 

The convergence criterion can be defined either as the maximum number of itera-
tions (t) of steps 2 and 3 or as the maximum absolute difference between centroids in 
two consecutive iterations. The K-Means Algorithm has two main drawbacks: (i) it 
may get stuck at local optimal partitions; (ii) the user has to provide the number of 
clusters (K). Besides, the K-Means can sometimes end up with less than K clusters if, 
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in a set of K centroids, at least one is worse than all the other ones. This situation can 
happen, for instance, if all objects are nearer to the other (K-1) centroids. However, 
this is not a hard limitation, because it can indicate that there are less than K clusters. 
Indeed, the choice of K is very hard and a usual practical approach is to try several 
different solutions (one for each K-value) and then choose the most suitable one, by 
plotting the value of the clustering criterion against the number of clusters. In a grid 
environment, this approach can be performed in a parallel way, in which each ma-
chine runs the algorithm for a specific K-value. In addition, it is also useful to run the 
K-Means for different initial partitions, and it can also be performed in parallel (this 
approach is employed in our work). Due to those characteristics, the K-Means algo-
rithm is suitable for execution as a BoTs application on the MyGrid platform. In addi-
tion, K-Means is suitable for our experiments, because of its efficiency - O(tKn). 

2.2   The Platform MyGrid 

The MyGrid platform [6] was conceived to support the execution of BoT applications, 
which constitute a class of parallel applications that can be partitioned in several in-
dependent tasks. Usually, these tasks have an infrequent need for communication.  

The main benefits of MyGrid are twofold: minimal installation effort and ease of 
use. Most grid platforms (for example see [11]) can only be installed and configured 
by system administrators. Moreover, installation procedures are usually manually 
repeated in a considerable number of machines. MyGrid enables regular users to 
create their own grid to run applications on whatever resources they have access to, 
without the need for these users to get involved into grid details and administrative 
procedures for heterogeneous platforms.  

Since MyGrid focuses on BoT applications, its working environment consists of a 
small set of services to enable its users to manipulate their files on the grid. Conse-
quently, no previous software installation nor shared file system are needed on ma-
chines. A user is required to install and configure MyGrid only on one machine, 
which is called home machine. Interactions with other machines are supported by the 
Grid Machine Interface (GMI), i.e., a minimal set of services that must be available in 
a machine so it can be used as a machine for grid computing, the so-called grid ma-
chine. These services consist of: (1) remote executing on a grid machine; (2) termina-
tion of a running task; and (3) file transfers between the home and  grid machines.  

Mygrid implements two task scheduling algorithms, Work Queue[6] and Work 
Queue with Replication (WQR) [12]. WQR starts the execution of each task on idle 
grid machines just like the Workqueue algorithm. Once the queue is empty, Mygrid 
starts execution of replicated instances of unfinished tasks on idle machines. Once a 
task completes, all other replicas are terminated. If a machine is overloaded or fails, 
the WQR will eventually re-execute the corresponding task on another machine. 

2.3   Running K-Means as a Bag-of-Tasks Application 

Our experiments were performed in a dataset formed by nine overlapping clusters. 
These clusters contain 100 objects, randomly generated using bi-dimensional Gaus-
sian distributions with standard deviations equal to 0.5 and centers [x,y] given by 
[1,1],[3,1],[5,1],[1,3],[3,3],[5,3],[1,5],[3,5],[5,5]. We have employed K=150 clusters 
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and t=500 iterations. These parameter values were chosen because they are suitable to 
characterize the scalability of the grid platform and to assess the performance of the 
proposed scheduling algorithm.  

Initially, experiments to estimate the performance gains were executed on a grid of 
25, 30 and 35 machines. Twenty machines are located at UniSantos and the others at 
the Federal University of Campina Grande, Brazil. A distance of about 3000 kilome-
ters separates these two sites. The machines at UniSantos are 1.8 GHz Pentium IV 
machines with 128 MB of RAM. Machines at Campina Grande have 1.8GHz Pentium 
IV processors with 630 MB of RAM. The results shown in Figure 1 are the average of 
ten executions at different times of the day. A Pentium IV with 1GB of main memory 
was used as the home machine. This machine is dedicated to provide dataset distribu-
tion, task dispatching to grid machines and output file gathering.  The scheduling 
strategy used was the standard Workqueue algorithm. Version 1.1 of MyGrid was 
used in experiments. 

The execution time of DM applications can be significantly reduced on a Grid en-
vironment, but the scalability of a grid with more than 30 machines is poor, as illus-
trated in Figure 1. It is due to both the application behavior and the way MyGrid in-
teracts with grid machines to manage input and output files. Thus, a more detailed 
view of the MyGrid working environment becomes necessary.  

Each MyGrid task is divided in three subtasks (init, remote and collect), which are 
performed sequentially, in that order. Both init and collect subtasks are executed on 
the home machine, to send input files to grid machines and to collect the output files 
back to the home machine, respectively. The remote subtask runs on grid machines, 
and it is responsible to perform the computation itself. Depending on the size of input 
and output files and the number of grid machines, the execution of init and collect 
subtasks on the home machine may become a bottleneck. The overhead related to file 
transfers in the home machine depends on both the size of the input and output files 
and the number of machines added to the grid. In addition, the data transfer rate ob-
served in the home machine can also be affected by the running time of remote sub-
tasks. The shorter is the execution time of remote subtasks, the more frequent is the 
transfer of input and output files, which increases the data transfer rate in the home 
machine.  

The main cause of the poor scalability depicted in Figure 1 is the bottleneck that 
appeared at the home machine.  For each application task, a small number of proc-
esses are created at the home machine to manage the transferring of input and output 
files to and from grid machines. Such processes are eliminated as soon as their corre-
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Fig. 1. Average execution times in a Grid  Fig. 2. Average execution times in a dedicated 
environment (350 tasks). cluster environment. 
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sponding tasks have been completed. Thus, short-duration application tasks can in-
crease the rate of creation/destruction of such processes to critical levels. Moreover, 
these processes execute concurrently, competing for memory, I/O subsystem, network 
bandwidth, CPU cycles, and other resources. Our tests have shown that the scalability 
of the application can be severely impacted when we execute a large number of tasks, 
due mainly to the bottleneck created at the home machine. This fact is evidenced by a 
new set of experiments generated on a dedicated cluster of Pentium IV machines. 
These results are shown in Figure 2.  

For the results shown in Figure 2, we run the set of tasks sequentially on a single, 
stand alone machine with a Pentium IV (1.8 GHz) processor, and 1 GB of main mem-
ory. Then, the same set of tasks were run on 2, 4, 8, 12, 16 and 20 dedicated machines 
with similar hardware characteristics, interconnected by a 100 Mbps Ethernet LAN.  
The schedulling strategy was the standard Workqueue algorithm. By examining Fig-
ure 2, it is clear that scalability is poor for cluster platforms with more than 16 ma-
chines. 

3   A Scheduling Algorithm for Data Mining Tasks 

The bottleneck represented by the home machine can be characterized by examining 
the execution times of each independent task and isolating the times required for the 
corresponding init, remote and collect subtasks. For very short executions, like the 
ones here performed, the time waste transferring data sometimes is larger then the 
computational time. Beyond that, there is a reduction of performance when more 
machines are aggregated, because the home machine needs to manage more processes 
which compete for resources. In Mygrid 1.1, for each application task, a small number 
of processes are created to manage the transfer of input and output files to and from 
grid machines. Such processes are terminated as soon as their tasks have been accom-
plished. Thus, short application tasks can increase the rate of creation/destruction of 
such processes to critical levels. Moreover, these processes execute concurrently, 
competing for memory, I/O subsystem, network bandwidth, CPU cycles, and other 
resources in the home machine. 

One way of reducing the impact of the bottleneck represented by the home ma-
chine on the scalability of the platform is to group sets of tasks in one larger task and 
then execute the “big” task in a grid machine. In the following we will refer to this big 
task as a job. The main idea is to group a set on tasks into one execution in a remote 
grid machine, when the number of machines of the grid grows up and the execution 
time of an individual task is small, i.e., having the same order of magnitude of the 
time need to transfer input and output files over the network.  

In the following we propose scheduling algorithms for reducing the impact of the 
bottleneck at the home machine. As a consequence, scalability is improved. Two 
different platforms are considered: a dedicated cluster, in which all machines are 
located in the same administrative domain, and a grid environment composed of het-
erogeneous machines located at different sites. 

For the results in the following sections we run a BoT K-means application com-
posed of 350 independent tasks. These tasks simulate possible variations of initial 
partitions in the K-means algorithm (described in Section 2.1). 
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3.1   Dedicated Cluster 

In a dedicated cluster we used the following algorithm to group tasks: (i) Tasks are 
grouped in a way that only one job (group of independent tasks) is created per ma-
chine. By considering just one job per machine we reduce the amount of work to be 
done by the home machine in managing jobs; (ii) Tasks are clustered into jobs in a 
way that the time needed for processing each job is about the same for every machine. 
In order to do so, static information about the configuration of each machine (such as 
processor speed and memory) should be available. Therefore, the amont of work to be 
executed by each processor is statically balanced. 

We performed initial experiments using a cluster comprised of 20 machines at 
Unisantos in the same administrative domain. All machines have one Pentium IV (1.8 
GHz) processor, and 128 MB of main memory. For those executions we used a home 
machine with 1 GB of main memory. Results for clusters composed of 8, 12, 16 and 
20 machines are shown in Figure 3. 
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Fig. 3. Average execution times in a dedicated cluster -  tasks grouped into jobs. 

 
Since the platforms are composed of homogeneous machines, the number of inde-

pendent tasks assigned to each machine is an integer in the interval    ]/,/[ PTPT , 

where T is the total number of tasks (in this case 350) and P is number of machines. It 
is worth noting the improvement in scalability when tasks are grouped into jobs. 

Since the files to be processed by each task are the same in this application, it is 
possible to send the files just once. As a consequence there is a reduction on both the 
amount of processing needed to manage remote tasks in home machine and network 
traffic. As a consequence there is significant reduction in the overall makespan, which 
can be verified by comparing the results in Figure 3 to the results in Figure 2.  

3.2   Grid Platform 

In grid platforms, faults are common, and this fact should be taken into account ex-
plicitly to define a scheduling algorithm. The degree of heterogeneity is also much 
larger in a grid, when comparing to a cluster. We used the algorithm proposed for the 
dedicated cluster as a starting point, and modified it as described below: 
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(i)  Just like the dedicated cluster algorithm, tasks are grouped in a way that only 
one job is created per machine. 

(ii)  Cluster tasks into jobs in a way that the time needed for processing each job is 
about the same for every machine, as if the machines are dedicated, by using 
static information.  In the case of a grid the static information should include 
the machine is local, i.e., if the machine is in the same administrative domain of 
the home machine. A larger amount of work should be assigned to local ma-
chines, as network delays are considerably smaller in this case. 

(iii) For every x tasks completed, the grid machine should send the corresponding 
results back to the home machine. This mechanism is similar to a regular 
checkpointing. If the grid machine fails, the only tasks that have to be executed 
are those for which the results were not received. It is possible to obtain 
information about the current load of a grid machine by measuring the time 
needed for executing x tasks. Beyond that, the home machine can assert the 
failure of a grid machine by considering a dynamically adjustable timeout.  If 
the home machine does not receive any results for a period of time equal or 
larger than the timeout, the grid machine is considered offline.  

(iv) If a machine becomes idle, send a replica of the remaining tasks of the slowest 
machine to the idle machine. If the slowest machines’ tasks have already been 
replicated, consider the second slowest machine, and so on (only one replica 
per task).  

We also run experiments in a grid environment comprised of 25, 30 and 35 hetero-
geneous machines, 20 machines from Unisantos and the others from Federal Univer-
sity of Campina Grande. Initial results are shown in Figure 4. Given the static infor-
mation available about the machines and networks, the load was distributed in a way 
that about 60 % to 80% of the tasks were initially assigned to local machines at Uni-
santos. The actual figure depends on the number of local machines that compose the 
grid. The other tasks were assigned to remote (Campina Grande) machines. Despite 
the short execution times and the relatively small number of machines, the results of 
Figure 4 show a very significant improvement when compared to results shown in 
Figure 1. Both the scalability and the performance are considerably improved. For 
instance, for the 35 machines plataform, the performance improvement in the overall 
makespan is about 56%. 
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Fig. 4. Average execution times in a grid environment – tasks grouped into jobs. 
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4   Conclusion 

This paper evaluated the scalability of a data mining method (K-Means Algorithm) 
implemented as a BoT application, using the middleware Mygrid. We proposed a 
scheduling strategy aimed to improve scalability, by grouping together sets of inde-
pendent tasks to be executed in a grid machine. Our group is now investigating ways 
of improving even further the scalability of the platform by distributing the functions 
associated to the home machine among several machines. 
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