
M. Danelutto, D. Laforenza, M. Vanneschi (Eds.): Euro-Par 2004, LNCS 3149, pp. 254–262, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Scheduling Algorithm for Running Bag-of-Tasks
Data Mining Applications on the Grid

Fabrício A.B. da Silva, Sílvia Carvalho, and Eduardo R. Hruschka

Universidade Católica de Santos (Unisantos)
R. Dr. Carvalho de Mendonça, 144 – 11070-100 – Santos (SP)
{fabricio,mygridgene,erh}@unisantos.edu.br

Abstract. Data mining applications are composed of computing-intensive proc-
essing tasks, which are natural candidates for execution on high performance,
high throughput platforms such as PC clusters and computational grids. Be-
sides, some data-mining algorithms can be implemented as Bag-of-Tasks (BoT)
applications, which are composed of parallel, independent tasks. Due to its own
nature, the adaptation of BoT applications for the grid is straightforward. In this
sense, this work proposes a scheduling algorithm for running BoT data mining
applications on grid platforms. The proposed algorithm is evaluated by means
of several experiments, and the obtained results show that it improves both
scalability and performance of such applications.

1 Introduction

Knowledge discovery in databases is the non-trivial process of identifying valid,
novel, potentially useful, and ultimately understandable patterns in data [1]. Data
Mining (DM) is a step in this process that centers on the automated discovery of new
facts and relationships in data. DM consists of three basic steps: data preparation,
information discovery and analysis of the mining algorithm output. All these steps
exploit huge amounts of data and are computationally expensive. In this sense, several
techniques have been proposed to improve the performance of DM applications, such
as parallel processing [3] and implementations based on cluster of workstations [4].

A computational grid, or simply grid for short, provides access to heterogeneous
resources in a geographically distributed area, allowing the integration of these het-
erogeneous and distributed resources into a unified computer resource. Computational
grids are usually built on top of specially designed middleware platforms, the so-
called grid platforms. Grid platforms enable the sharing, selection and aggregation of
a variety of resources including supercomputers, servers, workstations, storage sys-
tems, data sources and specialized devices that are geographically distributed and
owned by different organizations [5].

Among the most suitable applications for running on a grid are the Bag-of-Tasks
(BoT) applications, which are parallel applications whose tasks are independent of
each other. Examples of BoT applications include Monte Carlo simulations, massive
searches (such as key breaking), parameter sweeps, image manipulation, and data
mining. In this work, we analyze the use of computational grids for data mining.

Scheduling Algorithm for Running Bag-of-Tasks Data Mining Applications on the Grid 255

BoT data mining applications can present scalability problems when executing on
the grid. In this paper, we define scalability as the ability of a grid platform to reduce
the total execution time of a BoT application as the number of machines added to the
grid increases, given that the number of tasks of the BoT application is larger than the
number of machines in the grid. This paper proposes a scheduling algorithm that
improves scalability of BoT data mining applications on the grid, by grouping sets of
independent tasks into larger ones, which are executed on grid machines. For the
experimental results we used the MyGrid platform [6], which is specially designed to
run BoT applications.

The remaining of this paper is organized as follows: Section 2 approaches the em-
ployed data mining algorithm (K-Means) in the context of BoT applications. This
section also presents experimental results related with the scalability problem to be
tackled by our scheduling algorithm. This algorithm is described and evaluated in
Section 3. Finally, Section 4 presents the conclusions and points out some future
work.

2 Running Data Mining Algorithms as BoTs Applications

Some recent works suggest that grids are natural platforms for developing high per-
forming data mining services [7,8,9]. For instance, Orlando et al. [8] describe the
application of two data mining algorithms in the Knowledge Grid [7]: DCP and K-
means. The former algorithm enhances the popular Apriori Algorithm [10], which is
an algorithm for frequent set counting, whereas the latter one is a clustering algo-
rithm. In this work, we have also employed the K-Means algorithm (briefly described
in Section 2.1) implemented as a BoT application on the MyGrid platform (depicted
in Section 2.2). Section 2.3 reports experimental results that illustrate the need for a
specific scheduling algorithm specially designed to run BoT applications.

2.1 K-Means Algorithm

Clustering algorithms involving the calculation of the mean (centroid) of each cluster
are often referred to as K-means algorithms [2]. Basically, these algorithms partition a
dataset of n objects into K clusters. The K value, which represents the number of
clusters, is specified by the user. These algorithms try to minimize the error sum of
distances (e.g. Euclidean) between objects of a cluster and its centroid. The imple-
mentation employed in our work can be summarized as follows:

1. Generate a random initial partition of objects into K nonempty clusters;
2. Compute the cluster centroids (mean vectors) of the current partition;
3. Assign each object to the cluster with the nearest centroid;
4. If the convergence criterion has been met, stop. Otherwise, go to step 2.

The convergence criterion can be defined either as the maximum number of itera-
tions (t) of steps 2 and 3 or as the maximum absolute difference between centroids in
two consecutive iterations. The K-Means Algorithm has two main drawbacks: (i) it
may get stuck at local optimal partitions; (ii) the user has to provide the number of
clusters (K). Besides, the K-Means can sometimes end up with less than K clusters if,

256 F.A.B. da Silva, S. Carvalho, and E.R. Hruschka

in a set of K centroids, at least one is worse than all the other ones. This situation can
happen, for instance, if all objects are nearer to the other (K-1) centroids. However,
this is not a hard limitation, because it can indicate that there are less than K clusters.
Indeed, the choice of K is very hard and a usual practical approach is to try several
different solutions (one for each K-value) and then choose the most suitable one, by
plotting the value of the clustering criterion against the number of clusters. In a grid
environment, this approach can be performed in a parallel way, in which each ma-
chine runs the algorithm for a specific K-value. In addition, it is also useful to run the
K-Means for different initial partitions, and it can also be performed in parallel (this
approach is employed in our work). Due to those characteristics, the K-Means algo-
rithm is suitable for execution as a BoTs application on the MyGrid platform. In addi-
tion, K-Means is suitable for our experiments, because of its efficiency - O(tKn).

2.2 The Platform MyGrid

The MyGrid platform [6] was conceived to support the execution of BoT applications,
which constitute a class of parallel applications that can be partitioned in several in-
dependent tasks. Usually, these tasks have an infrequent need for communication.

The main benefits of MyGrid are twofold: minimal installation effort and ease of
use. Most grid platforms (for example see [11]) can only be installed and configured
by system administrators. Moreover, installation procedures are usually manually
repeated in a considerable number of machines. MyGrid enables regular users to
create their own grid to run applications on whatever resources they have access to,
without the need for these users to get involved into grid details and administrative
procedures for heterogeneous platforms.

Since MyGrid focuses on BoT applications, its working environment consists of a
small set of services to enable its users to manipulate their files on the grid. Conse-
quently, no previous software installation nor shared file system are needed on ma-
chines. A user is required to install and configure MyGrid only on one machine,
which is called home machine. Interactions with other machines are supported by the
Grid Machine Interface (GMI), i.e., a minimal set of services that must be available in
a machine so it can be used as a machine for grid computing, the so-called grid ma-
chine. These services consist of: (1) remote executing on a grid machine; (2) termina-
tion of a running task; and (3) file transfers between the home and grid machines.

Mygrid implements two task scheduling algorithms, Work Queue[6] and Work
Queue with Replication (WQR) [12]. WQR starts the execution of each task on idle
grid machines just like the Workqueue algorithm. Once the queue is empty, Mygrid
starts execution of replicated instances of unfinished tasks on idle machines. Once a
task completes, all other replicas are terminated. If a machine is overloaded or fails,
the WQR will eventually re-execute the corresponding task on another machine.

2.3 Running K-Means as a Bag-of-Tasks Application

Our experiments were performed in a dataset formed by nine overlapping clusters.
These clusters contain 100 objects, randomly generated using bi-dimensional Gaus-
sian distributions with standard deviations equal to 0.5 and centers [x,y] given by
[1,1],[3,1],[5,1],[1,3],[3,3],[5,3],[1,5],[3,5],[5,5]. We have employed K=150 clusters

Scheduling Algorithm for Running Bag-of-Tasks Data Mining Applications on the Grid 257

and t=500 iterations. These parameter values were chosen because they are suitable to
characterize the scalability of the grid platform and to assess the performance of the
proposed scheduling algorithm.

Initially, experiments to estimate the performance gains were executed on a grid of
25, 30 and 35 machines. Twenty machines are located at UniSantos and the others at
the Federal University of Campina Grande, Brazil. A distance of about 3000 kilome-
ters separates these two sites. The machines at UniSantos are 1.8 GHz Pentium IV
machines with 128 MB of RAM. Machines at Campina Grande have 1.8GHz Pentium
IV processors with 630 MB of RAM. The results shown in Figure 1 are the average of
ten executions at different times of the day. A Pentium IV with 1GB of main memory
was used as the home machine. This machine is dedicated to provide dataset distribu-
tion, task dispatching to grid machines and output file gathering. The scheduling
strategy used was the standard Workqueue algorithm. Version 1.1 of MyGrid was
used in experiments.

The execution time of DM applications can be significantly reduced on a Grid en-
vironment, but the scalability of a grid with more than 30 machines is poor, as illus-
trated in Figure 1. It is due to both the application behavior and the way MyGrid in-
teracts with grid machines to manage input and output files. Thus, a more detailed
view of the MyGrid working environment becomes necessary.

Each MyGrid task is divided in three subtasks (init, remote and collect), which are
performed sequentially, in that order. Both init and collect subtasks are executed on
the home machine, to send input files to grid machines and to collect the output files
back to the home machine, respectively. The remote subtask runs on grid machines,
and it is responsible to perform the computation itself. Depending on the size of input
and output files and the number of grid machines, the execution of init and collect
subtasks on the home machine may become a bottleneck. The overhead related to file
transfers in the home machine depends on both the size of the input and output files
and the number of machines added to the grid. In addition, the data transfer rate ob-
served in the home machine can also be affected by the running time of remote sub-
tasks. The shorter is the execution time of remote subtasks, the more frequent is the
transfer of input and output files, which increases the data transfer rate in the home
machine.

The main cause of the poor scalability depicted in Figure 1 is the bottleneck that
appeared at the home machine. For each application task, a small number of proc-
esses are created at the home machine to manage the transferring of input and output
files to and from grid machines. Such processes are eliminated as soon as their corre-

00:26:390:26:39 0:27:03

0:00

0:08

0:17

0:25

0:34

25 30 35

number of machines

tim
e

(m
in

u
te

s)

'

2:42:11

4:16:01

1:20:00
0:41:30

0:30:48 0:25:59 0:25:11
0:00

0:57

1:55

2:52

3:50

4:48

1 2 4 8 12 16 20

number of machines

ti
m

e
 (

h
o

u
r

/ m
in

u
te

s
)

'

Fig. 1. Average execution times in a Grid Fig. 2. Average execution times in a dedicated
environment (350 tasks). cluster environment.

258 F.A.B. da Silva, S. Carvalho, and E.R. Hruschka

sponding tasks have been completed. Thus, short-duration application tasks can in-
crease the rate of creation/destruction of such processes to critical levels. Moreover,
these processes execute concurrently, competing for memory, I/O subsystem, network
bandwidth, CPU cycles, and other resources. Our tests have shown that the scalability
of the application can be severely impacted when we execute a large number of tasks,
due mainly to the bottleneck created at the home machine. This fact is evidenced by a
new set of experiments generated on a dedicated cluster of Pentium IV machines.
These results are shown in Figure 2.

For the results shown in Figure 2, we run the set of tasks sequentially on a single,
stand alone machine with a Pentium IV (1.8 GHz) processor, and 1 GB of main mem-
ory. Then, the same set of tasks were run on 2, 4, 8, 12, 16 and 20 dedicated machines
with similar hardware characteristics, interconnected by a 100 Mbps Ethernet LAN.
The schedulling strategy was the standard Workqueue algorithm. By examining Fig-
ure 2, it is clear that scalability is poor for cluster platforms with more than 16 ma-
chines.

3 A Scheduling Algorithm for Data Mining Tasks

The bottleneck represented by the home machine can be characterized by examining
the execution times of each independent task and isolating the times required for the
corresponding init, remote and collect subtasks. For very short executions, like the
ones here performed, the time waste transferring data sometimes is larger then the
computational time. Beyond that, there is a reduction of performance when more
machines are aggregated, because the home machine needs to manage more processes
which compete for resources. In Mygrid 1.1, for each application task, a small number
of processes are created to manage the transfer of input and output files to and from
grid machines. Such processes are terminated as soon as their tasks have been accom-
plished. Thus, short application tasks can increase the rate of creation/destruction of
such processes to critical levels. Moreover, these processes execute concurrently,
competing for memory, I/O subsystem, network bandwidth, CPU cycles, and other
resources in the home machine.

One way of reducing the impact of the bottleneck represented by the home ma-
chine on the scalability of the platform is to group sets of tasks in one larger task and
then execute the “big” task in a grid machine. In the following we will refer to this big
task as a job. The main idea is to group a set on tasks into one execution in a remote
grid machine, when the number of machines of the grid grows up and the execution
time of an individual task is small, i.e., having the same order of magnitude of the
time need to transfer input and output files over the network.

In the following we propose scheduling algorithms for reducing the impact of the
bottleneck at the home machine. As a consequence, scalability is improved. Two
different platforms are considered: a dedicated cluster, in which all machines are
located in the same administrative domain, and a grid environment composed of het-
erogeneous machines located at different sites.

For the results in the following sections we run a BoT K-means application com-
posed of 350 independent tasks. These tasks simulate possible variations of initial
partitions in the K-means algorithm (described in Section 2.1).

Scheduling Algorithm for Running Bag-of-Tasks Data Mining Applications on the Grid 259

3.1 Dedicated Cluster

In a dedicated cluster we used the following algorithm to group tasks: (i) Tasks are
grouped in a way that only one job (group of independent tasks) is created per ma-
chine. By considering just one job per machine we reduce the amount of work to be
done by the home machine in managing jobs; (ii) Tasks are clustered into jobs in a
way that the time needed for processing each job is about the same for every machine.
In order to do so, static information about the configuration of each machine (such as
processor speed and memory) should be available. Therefore, the amont of work to be
executed by each processor is statically balanced.

We performed initial experiments using a cluster comprised of 20 machines at
Unisantos in the same administrative domain. All machines have one Pentium IV (1.8
GHz) processor, and 128 MB of main memory. For those executions we used a home
machine with 1 GB of main memory. Results for clusters composed of 8, 12, 16 and
20 machines are shown in Figure 3.

0:15:55
0:19:11

0:37:33

0:25:52

0:00

0:08

0:17

0:25

0:34

0:43

8 12 16 20

number of machines

tim
e

(m
in

ut
es

)

'

Fig. 3. Average execution times in a dedicated cluster - tasks grouped into jobs.

Since the platforms are composed of homogeneous machines, the number of inde-

pendent tasks assigned to each machine is an integer in the interval    ]/,/[PTPT ,

where T is the total number of tasks (in this case 350) and P is number of machines. It
is worth noting the improvement in scalability when tasks are grouped into jobs.

Since the files to be processed by each task are the same in this application, it is
possible to send the files just once. As a consequence there is a reduction on both the
amount of processing needed to manage remote tasks in home machine and network
traffic. As a consequence there is significant reduction in the overall makespan, which
can be verified by comparing the results in Figure 3 to the results in Figure 2.

3.2 Grid Platform

In grid platforms, faults are common, and this fact should be taken into account ex-
plicitly to define a scheduling algorithm. The degree of heterogeneity is also much
larger in a grid, when comparing to a cluster. We used the algorithm proposed for the
dedicated cluster as a starting point, and modified it as described below:

260 F.A.B. da Silva, S. Carvalho, and E.R. Hruschka

(i) Just like the dedicated cluster algorithm, tasks are grouped in a way that only
one job is created per machine.

(ii) Cluster tasks into jobs in a way that the time needed for processing each job is
about the same for every machine, as if the machines are dedicated, by using
static information. In the case of a grid the static information should include
the machine is local, i.e., if the machine is in the same administrative domain of
the home machine. A larger amount of work should be assigned to local ma-
chines, as network delays are considerably smaller in this case.

(iii) For every x tasks completed, the grid machine should send the corresponding
results back to the home machine. This mechanism is similar to a regular
checkpointing. If the grid machine fails, the only tasks that have to be executed
are those for which the results were not received. It is possible to obtain
information about the current load of a grid machine by measuring the time
needed for executing x tasks. Beyond that, the home machine can assert the
failure of a grid machine by considering a dynamically adjustable timeout. If
the home machine does not receive any results for a period of time equal or
larger than the timeout, the grid machine is considered offline.

(iv) If a machine becomes idle, send a replica of the remaining tasks of the slowest
machine to the idle machine. If the slowest machines’ tasks have already been
replicated, consider the second slowest machine, and so on (only one replica
per task).

We also run experiments in a grid environment comprised of 25, 30 and 35 hetero-
geneous machines, 20 machines from Unisantos and the others from Federal Univer-
sity of Campina Grande. Initial results are shown in Figure 4. Given the static infor-
mation available about the machines and networks, the load was distributed in a way
that about 60 % to 80% of the tasks were initially assigned to local machines at Uni-
santos. The actual figure depends on the number of local machines that compose the
grid. The other tasks were assigned to remote (Campina Grande) machines. Despite
the short execution times and the relatively small number of machines, the results of
Figure 4 show a very significant improvement when compared to results shown in
Figure 1. Both the scalability and the performance are considerably improved. For
instance, for the 35 machines plataform, the performance improvement in the overall
makespan is about 56%.

0:12:36
0:14:46

0:11:40

0:00

0:05

0:11

0:17

25 30 35

number of machines

tim
e (

mi
nu

tes
)

'

Fig. 4. Average execution times in a grid environment – tasks grouped into jobs.

Scheduling Algorithm for Running Bag-of-Tasks Data Mining Applications on the Grid 261

4 Conclusion

This paper evaluated the scalability of a data mining method (K-Means Algorithm)
implemented as a BoT application, using the middleware Mygrid. We proposed a
scheduling strategy aimed to improve scalability, by grouping together sets of inde-
pendent tasks to be executed in a grid machine. Our group is now investigating ways
of improving even further the scalability of the platform by distributing the functions
associated to the home machine among several machines.

Acknowledgements

We would like to acknowledge Walfredo Cirne and all the MyGrid/OurGrid team for
the support provided during the execution of experiments. This work was developed
in collaboration with HP Brazil R&D. Eduardo Raul Hruschka acknowledges CNPq
(proc. 301.353/03-4) for its financial support.

References

1. Fayyad, U. M., Shapiro, G. P., Smyth, P. “From Data Mining to Knowledge Discovery :
An Overview”. In: Advances in Knowledge Discovery and Data Mining, Fayyad, U.M.,
Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R., Editors, MIT Press, pp. 1-37, 1996.

2. Witten, I. H., Frank, E., Data Mining – Practical Machine Learning Tools and Techniques
with Java Implementations, Morgan Kaufmann Publishers, USA, 2000.

3. Freitas, A.A., Lavington, S.H., Mining Very Large Databases with Parallel Processing,
Kluwer Academic Publishers, 1998.

4. Baraglia, R., Laforenza, D., Orlando, S., Palmerini, P., Perego, R., Implementation Issues
in the Design of I/O Intensive Data Mining Applications on Clusters of Workstations,
Proceedings of the 3rd Workshop on High Performance Data Mining, International Paral-
lel and Distributed Processing Symposium 2000, Cancun, Mexico, May 2000.

5. Baker, M., Buyya, R., Laforenza, D. Grids and Grid Technologies for Wide-area Distrib-
uted Computing, Software, Pratice and Experience, v. 32, pp. 1437-1466, John Wiley and
Sons, 2002.

6. Walfredo Cirne, Daniel Paranhos, Lauro Costa, Elizeu Santos-Neto, Francisco Brasileiro,
Jacques Sauvé, Carla Oshtoff, Fabrício Silva, Cirano Silveira. Running Bag-of_Tasks Ap-
plications on Ccmputational Grids: The MyGrid Approach. Proceedings of the 2003 In-
ternational Conference on Parallel Processing, October 2003.

7. Canataro, M., Talia, D. The Knowledge Grid, Communications of ACM, v.46, n.1, 2003.
8. Orlando, S., Palmerini, P., Perego, R., Silvestri, F., Scheduling High Performance Data

Mining Tasks on a Data Grid Environment, Proceedings of Int. Conf. Euro-Par 2002, 27-
30 August 2002, Paderborn, Germany, LNCS 2400 - Springer-Verlag - Pag. 375-384.

9. Hinke, H., Novotny, J., Data Mining on NASA´s Information Power Grid, HPDC 2000,
Pittsburgh, Pennsylvania, USA, pp.292-293, IEEE Computer Society.

10. Agrawal, R., Mannila, H., Srikant, R., Tiovonen, H., Verkamo, A.I., Fast Discovery of
Association Rules In: Advances in Knowledge Discovery and Data Mining, Fayyad,
U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R., Editors, MIT Press, pp. 307-328,
1996.

262 F.A.B. da Silva, S. Carvalho, and E.R. Hruschka

11. I. Foster, C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit. Intl J. Super-
computer Applications, 11(2):115-128, 1997.

12. Daniel Paranhos, Walfredo Cirne, Francisco Brasileiro Trading Cycles for Information:
Using Replication to Schedule Bag-of-Tasks Applications on Computational Grids Pro-
ceedings of International Conference on Parallel and Distributed Computting, 2003.

	1 Introduction
	2 Running Data Mining Algorithms as BoTs Applications
	2.1 K-Means Algorithm
	2.2 The Platform MyGrid
	2.3 Running K-Means as a Bag-of-Tasks Application

	3 A Scheduling Algorithm for Data Mining Tasks
	3.1 Dedicated Cluster
	3.2 Grid Platform

	4 Conclusion
	Acknowledgements
	References

