Lookahead Scheduling
for Reconfigurable GRID Systems

Jesper Andersson', Morgan Ericsson', Welf Lowe', and Wolf Zimmermann?
1 Software Technology Group, MSI, Vixjo universitet
{jesan,mogge,wlo}@msi.vxu.se
2 Martin-Luther-Universitit Halle-Wittenberg, Institut fiir Informatik,
D-06099 Halle/Saale, Germany
zimmer@informatik.uni-halle.de

Abstract. This paper proposes an approach to continuously optimizing paral-
lel scientific applications with dynamically changing architectures. We achieve
this by combining a dynamic architecture and lookahead malleable task graph
scheduling.

1 Introduction

There is a rich body of research on both off-line scheduling and on-line load balancing.
The former produce good results for statically know programs, especially if the com-
munication behavior is know statically. The latter is commonly used when programs
or hardware configurations change during execution. The disadvantage of load balanc-
ing is its unawareness of the applications, leading to limited anticipation of future load
situations. Re-scheduling of changed applications or hardware configurations is a non
option since the algorithms are too slow.

This paper contributes by making off-line scheduling algorithms applicable for dy-
namic scenarios. We approach the problem by defining a Dynamic Service Architecture
(DSA), responsible for managing event-driven changes to applications and continuously
generating schedules for possible future situations. In order to make the continuous gen-
eration of schedules feasible we apply malleable task graph scheduling. This allows for
faster scheduling by the reuse of partial schedules.

The paper is organized as follows. Section 2 gives the foundations for the execution
and programming model, and introduces the DSA. Section 3 defines the mapping be-
tween the two architectural levels of the DSA. This section introduces the composition
and the scheduling models. Finally, Section 4 concludes the paper.

2 Application Scenario
This section introduces the foundations of the programming and execution model of the
intended system and defines the Dynamic Service Architecture.

M. Danelutto, D. Laforenza, M. Vanneschi (Eds.): Euro-Par 2004, LNCS 3149, pp. 263-270, 2004.
(© Springer-Verlag Berlin Heidelberg 2004

264 J. Andersson et al.

2.1 Programming and Execution Model

The hardware infrastructure, GRID System in the following, consist of: Sensors called
input nodes, generating a stream of input values, computation processors (nodes) and
an interconnecting network for communication. On this GRID system applications are
executed processing data from sensors. These applications are data parallel programs.
Their inputs are sensor input values directly or the output of other applications. If the
input of application « is the output of an application a’, a is called data-dependent on
a’. This is denoted by a’ — a. Applications are stateless, data driven, functions.

For individual applications we assume a High Performance Fortran (HPF)-like pro-
gramming model, with data parallel synchronous programs without any data distribu-
tion. We can model such an application by a family of taskgraphs G, = (V., E., 7).
Scientific applications can automatically be compiled to such a family of task-graphs [5].
The tasks v € V, model local computations without access to shared memory. 7(v) is
the execution time of task v on the target machine, and there is a directed edge from
v to w iff v writes a value to shared memory, that is read later by task w. Task-graphs
are always acyclic. G, does not always depend on the actual input . In many cases
of practical relevance, it only depends on the problem size n. We call these program
oblivious and denote their task graphs by GG,,. We write G instead of G, if n is arbitrary
but fixed. The height of a task v, denoted by h(v), is the length of the longest path from
a task with in-degree 0, to the task v.

The hardware is modeled by the LogP [2] model: in addition to the computation
costs 7, it models communication costs with parameters Latency, overhead, and gap
(which is actually the inverse of the bandwidth per processor). In addition to L, o, and
g, parameter P describes the number of processors. Moreover, there is a capacity con-
straint: at most [L/¢g]| messages are in transmission in the network from any processor
to any processor at any time. A send operation that exceeds this constraint stalls.

A LogP-schedule is a schedule that obeys the precedence constraints given by the
task-graph and the constraints imposed by the LogP-machine, i.e., sending and receiv-
ing a message takes time o, there must be at least time g between two consequential
send or receive operations, there must be at least time L between the end of a send task
and the beginning of the corresponding receive task, and the capacity constraint must
be obeyed. TIME(s) denotes the execution time of schedule s, i.e., the time at which
the last task finishes.

The configuration of a system is defined by: (i) its set of applications, (ii) the data
dependencies, and (iii) Quality of Service (QoS) parameters for the different applica-
tions.

2.2 Dynamic Service Architecture

A configuration might change over time, i.e. it is dynamic. These changes are user-,
application-, or system-triggered. The Dynamic Service Architecture (DSA) manages
change the running system. The DSA can be seen as a conceptual control system listen-
ing to events from and reconfiguring a physical processing accordingly. The architecture
of the processing system is defined by a composition of data-parallel applications. The
focus of reconfiguration is, for this paper, the rescheduling.

Lookahead Scheduling for Reconfigurable GRID Systems 265

The user in our scenario controls a certain set of applications. A typical user-
triggered change is adding an application to the system or removing it after gaining the
results. Some applications act as detectors, recognizing certain patterns in the processed
data, that will require a reconfiguration. Application-triggered change is the detection
of an interesting sensor activity requiring changed QoS parameters. The complexity of
applications might be input dependent. Certain inputs may lead to load peaks in applica-
tions. In order to guarantee the required quality of service to applications, certain others
applications are postponed to off-line computations. This is a typical system-triggered
change.

The DSA use two architecture levels. A scheduler establishes a one-to-one map-
ping M between the conceptual processing architectures, A, and the actual physical
running systems M : A — I. User-triggered changes occur on the conceptual level.
As a result a new conceptual system-architecture a € A is activated. This triggers
computation of a corresponding implementation ¢ = M (a), including the computa-
tion of a new schedule that is distributed to the physical level. Inversely, application-
and system-triggered changes occur on the physical level. The level should reflect the
situation of the level in order to handle subsequent user-triggered changes in a cor-
rect manner. Hence, application- and system-triggered changes also affect the concep-
tual. However, we distinguish between conceptual events implementing user-triggered
change requests and physical events implementing application- and system-triggered
events. Both event-classes initiates the generation of new implementations using the
translation and scheduling M : A — 1.

3 Mapping Conceptual to Physical Architecture

This section continues the discussion of the reconfigurations performed by the DSA,
more specifically the mapping from a conceptual to a physical implementation. This
mapping consists of the composition of applications to systems, discussed in Section
3.1 and scheduling. The scheduling is implemented as a continuous process, generating
all possible schedules for a given state. This lookahead scheduling is defined in Section
3.2. The lookahead-scheduling must be as fast as possible, since it defines the rate of
change events that can be dealt with. This means that we need to speed-up the classic
static scheduling algorithms. This is accomplished using malleable task scheduling,
which is described in Section 3.3.

3.1 Static Composition of Applications to Systems

So far, we defined the components: data-parallel applications, translated to task graphs
and scheduled to the infrastructure. For each component, we can determine an upper
time bound for its execution. Each component implements a function mapping an input
array a; to an output array a,.

To this end, composition of components can be done by defining a program using
these components and assigning the output array of one component to the input of
another. Obviously, this system is a data-parallel program, too. It can be compiled and
scheduled just like the individual components.

266 J. Andersson et al.

The computation of an optimum LogP-schedule is known to be NP-hard. How-
ever, good approximations and heuristics, c.f. our own contributions in task scheduling,
e.g. [3], guarantee a small constant factor in delay. In practice, the results are even closer
to the optimum. Moreover, an upper time bound for TIME (s), the execution time of a
schedule s, can be determined statically.

Adding/removing a component requires a complete re-translation of the system
to a new task graph and a rescheduling of the new task-graph. This is, in principle,
not a problem since adding/removing a component can be planned and prepared off-
line. After the complete schedule is computed for the new system, the computation
can replace the running system with the new system. However, for application- and
system-triggered changes the delay to prepare for a change is not acceptable. There-
fore, we compute new schedules before they are actually needed. We call this lookahead
scheduling.

3.2 Lookahead Scheduling

As mentioned before, we distinguish between conceptual events E,. implementing user-
triggered change requests and physical events £, implementing application- and system-
triggered events. If an e, € E.. occurs, we compute the new architecture a’ € A of the
processing system, map it to a implementation architecture i’ = M (a’), compute the
delta between the current implementation architecture ¢ and ¢ and deploy that delta to
the GRID system. If a e, € E), occurs, the reconfiguration must be finished in mil-
liseconds. However, we exploit the assumption that the expectation on the rate of such
events I, is rather low. The fundamental principle for the optimization of our dynamic
reconfiguration is to employ a continuous implementation mapping with a lookahead
schema. For each system architecture A, we pre-compute possible changes A w.r.t.
possible system events [,. More specifically: given a current (baseline) architecture
a € A and each possible system event e, € E,,, we compute the evolved architecture
a’ = A(ep, a). After having determined possible deltas, we have a set of lookahead(1)
architectures. These are mapped in the same way as the base-line-architecture is mapped
to lookahead(1)- implementations: ¢’ = M (a’). Together with the current baseline im-
plementation ¢ = M (a), these possible lookahead(1)-implementations are deployed. If
this process is not interrupted by other change events, we can react on events to come
very swiftly. Details for both scenarios are defined in [1].

The frequency at which we can tolerate change events is the inverse of the delay
for computing the lookahead schedules. This delay can be reduced by two means: (i)
performing composition on task graph level instead of application level and (ii) using
predefined schedules for the task graphs. Both will be discussed below.

Instead of composing data-parallel applications to a data-parallel system, which is
then translated to task graphs and scheduled to the infrastructure, we bookkeep the task
graphs of the individual applications and just compose these task graphs. Only a new
application is translated into a new task graph. Inversely, removal leads to disconnecting
the corresponding task graphs and deleting transitively depending tasks.

While reusing task graphs is straight forward, reusing schedules is not, since an op-
timum schedule (or its approximation) does not necessarily keep the schedules for the
different task graphs distinct. Instead, it might merge tasks of different task graphs into

Lookahead Scheduling for Reconfigurable GRID Systems 267

one process. Moreover, optimum schedules of individual task graphs (or their approxi-
mations) are, in general, not part of the optimal schedule for a composed system (or its
approximation).

This problem is approached by modeling task graphs as malleable tasks and sys-
tems with malleable task graphs. A malleable task is a task that can be executed on
p = 1...P processors. Its execution time is described by a non-increasing function
7 of the number of processors p actually used. For each task graph the schedules s,
can be pre-computed for p = 1... P and 7(p) = TIME(s,). A malleable task graph
is recursively defined as a task graph over malleable tasks, i.e. nodes are ordinary task
graphs or malleable task graphs and edges are the data-dependencies between them.

3.3 Scheduling Malleable Task Graphs

We now show how malleable task-graphs stemming from oblivious programs can be
scheduled. The basic idea is to schedule a malleable task-graph layer by layer. By defi-
nition, a layer contains only independent tasks. Hence, the results of [4] can be applied
when scheduling a layer. After scheduling a layer one builds a communication phase.
In order to determine the weight function of a malleable task v, a malleable task graph
within v is scheduled for p = 1,..., P processors. If the task-graph only contains
atomic tasks then traditional algorithms are applied. The following algorithm imple-
ments these ideas:

Algorithm schedule(G, P)
INPUT: Malleable Task Graph G' = (V, E') with Layers Ao, ..., Ap
Number of available processors P
OUTPUT: A schedule s for G
if each v € V is atomic then
determine the weights 7,;
compute a schedule s of (; //any traditional scheduling algorithm suffices
return s;
end;
fori:=0,...,mdo
for each v € A; do
if v is malleable then
let G, be the malleable task graph contained in v;
forj:=1,...,pdo
su(j) := schedule(G,, j);
T,(j) := min(makespan(sv(j)), Tv(j — 1); //T(0) = oo
endfor;
else determine 7 ;
forj:=1,...,pdo T,(j) := T3
endif;
endfor;
compute a schedule s; for the tasks in A; using [4];
schedule the communication from the schedule s to s;;
extend s by this communication and s;;
endfor;
return s;
end schedule

268 J. Andersson et al.

The computation of the schedules in the malleable tasks need only be done once.

In order to analyze the make-span of schedules computed by the algorithm, the time
required for a communication phase, the make-span of schedules for task-graphs with
atomic tasks, and the make-span of scheduling independent malleable tasks has to be
determined. The worst case for a communication phase is an all-to-all communication.
One could extend the underlying machine model with such communications or use a
scheduling approach for implementing such a communication phase (e.g the approach
of [3] for the LogP-model). In this article it is sufficient that a communication phase
for p processors costs time 7Tcomm (1, p) Where n is the total amount of data communi-
cated. For the purpose of this article it is just sufficient to assume that the make-span of
a schedule for a task-graph GG containing only atomic tasks can be estimated by an ap-
proximation factor c, i.e. the make-span is at most ¢ - Topt (G, p) where Tope (G, p) is the
make-span of an optimal schedule for G on p processors. For scheduling n independent
tasks / onto p processors, we use the results of [4], i.e., any schedule has a make-span
of at most v/3 - Tope(A(p)). A better approach will reduce the approximation factor.

We define a degree of malleability for the analysis of the make-span. Since the
number of hierarchy levels play a role, we inductively define the hierarchy level of a
malleable task v € V' and the hierarchy level of a malleable task-graph as follows:

— If v is not malleable the hierarchy level of v is 0

If v is a malleable task-graph G = (V, E, T') then the hierarchy level of v is that of
G

The hierarchy level of a malleable task graph G = (V, E,T) containing only
atomic tasks is 0

The hierarchy level of a malleable task graph G = (V, E, T') containing at least a
malleable task is £ + 1 where k is the maximal hierarchy level of a task v € V

The work of a malleable task graph G = (V, E,T) is defined as W (G) £ Z To(1).

veV
The work of a set of tasks V/ C V is defined as W (V') = Z To(1).
veV’
The degree of malleability, ;1(G, P) of a malleable task graph G = (V, E, T') with

layers Ao, ..., A, is inductively defined as follows:

i. u(G,p) = 1iffeach v € V is atomic
W(4i)/p
)/P+ Teomm(P)

.. . é . . — .
il. pu(A;,p) = min (urjxg/rll w(w, p), W > where p(w,p) = 1if w

is atomic.)
iii. (G, p) = min p(4i, p)
Theorem 1. Let G = (V, E, T) be a malleable task-graph with hierarchy level k and s
be a schedule for P processors computed by the above approach. Then the make-span
for the schedule s is at most: TIME (s) < c- 3k/2 Z‘("’G‘—(GP)) where a scheduling algorithm
with approximation factor c is used for each malleable task in any level of the hierarchy
which has only atomic tasks.

Proof. For k = 0, the claim states that TIME(s) < ¢ - Topt(G) since u(G, P) = 1in
this case. The claim holds since G only contains atomic tasks and G is scheduled by

Lookahead Scheduling for Reconfigurable GRID Systems 269

an algorithm guaranteeing an approximation factor c. For k& > 1, we prove the slightly
stronger claim that TIME(s) < ¢ - 3%/% - T,0e(G)/11(G, P) — Teomm(P) by induction
on k.
CASE k = 1: We have to show that TIME(s) < ¢-V/3-Topt(G)/11(G, P) = Teomm (P).
Let TIME(s;) the make-span of the schedule s; for layer A;. Observe that for
the case k = 1, any v € V is malleable task that is a task-graph containing only
atomic tasks. Thus, for any of these tasks x it holds that they have a schedule s,
with TIME(s;) < ¢ - Topt(z). Hence, the layer A;, using the result of [4], it holds
TIME(s;) < ¢ /3 Topt(A;) where Topi(A;) is the make-span of an optimal schedule
for A;. It holds:

TIME(s) < ni:(TIME(si) + Teomm(P)) + TIME(s,)
1=0
= > (TIME(s:) + Teomm(P)) = Teomm(P)

0

7

< (C . \/g . Topt(Ai) + Tcomm(P)) - Tcomm(P) (see above)

I

Il
o

7

<c- \/_ Z Topt +T¢omm(P)) - Tcomm(P)

n

<o VB3 (T4 + G (o = 1)) = ()
i=0 ’

- To Al .
<c-V3- Z H(%(P)) — Teomm (P) since W(A;)/P < Topi(Ay)
i=0 ’

<c- \/g . Topt(G) - Tcomm(P)
CASE k > 1: We argue similar as in the case £ = 1. By induction hypothesis, we have
for any v € V a schedule s, such that TIME(s,) < ¢-3*=1D/2. T, (s,)/u(G, P) —

Teomm (P). Using[4] we obtain TIME (s;) < ¢ - 3%/ - Tope(A:) / 11(G, P) = Teomm (P)
for the schedule s; of layer A;. With these observations, we calculate

TIME (s Z (TIME(:) + Teomm(P)) — Teomm (P)cf. case k = 1

n
1o
< Z 3k/2 pt ; Teomm (P) see above
=0
=cC- 3k/2 Z Opt Tcomm(P)

To (G)
<c- k/2L — Tcomm
=ed e T)

Remark 1. The bounds can be improved if a better approximation algorithm for schedul-
ing independent malleable tasks is used. If there is an algorithm guaranteeing an approx-
imation factor ¢ then the factor 3%/2 can be replaced by 6*.

270 J. Andersson et al.

4 Conclusions

This paper discussed systems of data-parallel applications requiring high performance.
Additionally, applications could be added/removed dynamically. In our scenario, the
system architecture could even change due to the results of applications.

We introduced a Dynamic Service Architecture for these systems, based on static
compositions and optimizations, but also allows for high performance and flexibility, by
use of a lookahead scheduling mechanism. In order to realize the lookahead schedul-
ing, malleable task scheduling is required. The lookahead scheduling and the results in
malleable task scheduling are the main contributions of this paper.

Future work include an implementation of the DSA for our test bed !. Here, we are
are also concerned with practical questions like administrating and prioritizing applica-
tions.

On a theoretical level, we are interested in extending our cost model towards the
compilation and scheduling processes of the applications. Together with a modeling
of the expectations of different system events, we might then be able to prioritize the
creation of specific evolved systems including even the creation of systems for more
than one evolution step in the future.

References

1. J. Andersson, M. Ericsson, and W. Lowe. An adaptivehigh-performance service architec-
ture. In Software Composition Workshop (SC) at ETAPS’04. Electronic Notes in Theoretical
Computer Science (ENTCS), 2004.

2. D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian, and
T. von Eicken. LogP: Towards a realistic model of parallel computation. In 4th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPOPP 93), pages 1-12,
1993. published in: SIGPLAN Notices (28) 7.

3. W. Lowe and W. Zimmermann. Scheduling balanced task-graphs to logp-machines. Parallel
Computing, 26(9):1083-1108, 2000.

4. G. Mounie, C. Rapine, and D. Trystram. Efficient approximation algorithms for scheduling
malleable tasks. In 1/th ACM Symposium on Parallel Algorithms and Architectures SPAA’99,
pages 23-32. ACM Press, 1999.

5. Wolf Zimmermann and Welf Lowe. An approach to machine-independent parallel program-
ming. In CONPAR ’94, Parallel Processing, volume 854 of LNCS, pages 277-288. Springer,
1994.

" LOFAR (LOw Frequency ARray), www.lofar.org is a radio infrastructure aiming at multi-

disciplinary research of astronomers, cosmologists, physicists, climatologists, cosmologists,
radio scientists, and IT researchers. It consists of geographically distributed digital sensors
connected to computing nodes with a high-speed network. Sensors are distributed over dis-
tances of 400 km and the system will produce data at a rate 25 Tbits/s. The Swedish initiative
LOIS (LOFAR Outrigger Scandinavia) aims, among others, at extending and enhancing the IT
infrastructure capabilities of LOFAR.

	1 Introduction
	2 Application Scenario
	2.1 Programming and Execution Model
	2.2 Dynamic Service Architecture

	3 Mapping Conceptual to Physical Architecture
	3.1 Static Composition of Applications to Systems
	3.2 Lookahead Scheduling
	3.3 Scheduling Malleable Task Graphs

	4 Conclusions
	References

