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Abstract. New DRAM technologies such as SDRAMs, RDRAMs, EDRAMs, 
CDRAMs and others are vying to be the next standard in DRAMs and improve 
upon bandwidth limit of conventional DRAMs. With proliferation of power-
aware systems, banked DRAM architecture has emerged as a promising candi-
date for reducing power. Prior work on optimizing applications in a banked 
memory environment has exclusively focused on uncompressed data. While this 
may be preferable from a performance viewpoint, it is not necessarily the best 
strategy as far as memory space utilization is considered. This is because com-
pressing data in memory may reduce the number of memory banks it occupies 
and this, in turn, may enable a better use of low-power operating modes. In this 
paper, we explore the possibility of compressing infrequently used data for in-
creasing effectiveness of low-power operating modes in banked DRAMs. Our 
experiments with five highly parallel array-based embedded applications indi-
cate significant savings in memory energy over a technique that exploits low-
power modes but does not use data compression/decompression. 

1   Introduction 

Low power dissipation in portable battery-operated platforms has drawn significant 
interest in the past decade. In many applications targeting at embedded platforms, a 
large fraction of energy consumption is due to main memory accesses. Recent work 
[1, 2, 3, 5] has suggested multi-banking as a way of reducing memory energy con-
sumption. The main rationale behind this approach is that per access energy consump-
tion is proportional to the size of the memory, and a small memory bank consumes 
much less (per access) energy than a large monolithic structure. In addition, unused 
memory banks in a multi-bank architecture can be placed into low-power operating 
modes to further energy savings.  

Prior work on optimizing applications in a banked memory environment has exclu-
sively focused on uncompressed data. In other words, the data manipulated by the 
application have been kept in memory in an uncompressed form throughout the exe-
cution. While this may be preferable from a performance viewpoint, it is not necessar-
ily the best option as far as memory space utilization is considered. This is because 
compressing data in memory may reduce the number of memory banks it occupies 
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and this, in turn, may enable a better use of existing low-power operating modes (i.e., 
unused banks can be placed into low-power operating modes). 

It is to be noted, however, that there are several important issues that need to be 
addressed before one has a reasonable data compression strategy. 

• How should the available memory space be divided between compressed and un-
compressed data? 

• What should be the granularity of compression? A whole array, a data page, etc.? 
• Which compression strategy should be employed when a given data block is to be 

compressed/decompressed? 

The third question posed above is orthogonal to the ideas explored in this paper. 
That is, the proposed strategy can work in conjunction with any data compres-
sion/decompression algorithm. Therefore, without loss of generality, in this paper we 
use the algorithm proposed by Kjelso et al [4]. In this work, we concentrate on the 
remaining questions and propose a strategy for optimizing the effectiveness of low-
power operating modes. While prior work employed data compression for energy 
savings and performance improvement [7, 9], to the best of our knowledge, this is the 
first study that considers data compression within the context of banked memory 
architectures.  

Our strategy divides the available memory space (memory banks) into two disjoint 
parts (groups): one that holds compressed data and one that holds uncompressed data. 
The main objective here is to keep non-hot data (i.e., the data that are not very fre-
quently used) in the compressed form to the extent possible. Another important issue 
here is to cluster the compressed data as much as possible for increasing the effec-
tiveness of low-power modes. The timing for compressions/decompressions is also an 
important issue. Typically, one does not want to access data while it is in the com-
pressed form (since it needs to be decompressed before it can be used; and this re-
quires extra cycles in execution). In addition, when a new data is created or an old 
data is re-written, one needs to decide whether to store it in compressed or uncom-
pressed form. In the rest of this paper, we focus on a banked memory architecture, 
and evaluate several compression-based memory bank management strategies for 
making best use of available low-power operating modes in a DRAM-based memory 
architecture.  

This paper is structured as follows. The next section gives an overview of banked 
memory architecture and low-power operating modes. Section 3 presents details of 
our compression-based memory management strategy. Section 4 gives experimental 
data. Section 5 concludes the paper by summarizing our major results, and giving a 
brief discussion of ongoing work. 

2   Banked Memory Architecture and Low-Power Operating Modes 

We target a memory system that contains a number of banks, each of which can be 
energy-controlled independently. To save energy in this architecture, we put unused 
memory banks into a low-power operating mode. We assume the existence of three 
operating modes for a memory bank: active, napping, and power-down. Each mode is 
characterized by its power consumption per cycle and the time that it takes to transi-
tion back to the active mode (referred to as the resynchronization time or resynchroni-
zation cost). Typically, lower the energy consumption, higher the resynchronization 
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time. These modes are characterized by varying degrees of the bank components 
being active. Table 1 shows our operating modes, their per cycle power consump-
tions, and resynchronization costs. 

Table 1. Operating-modes for memory banks. 

 Energy Consump tion (nJ/cycle) Resynchronization Cost (cycles) 
active 3.570 0 

napping 0.320 30 

power-down 0.005 9,000 

 
A memory controller that interfaces with the memory bus controls DRAM banks. 

The interface is not only for latching the data and addresses, but also to control the 
configuration and operation of the individual banks as well as their operating modes. 
For example, programming a specific control register in each memory bank could do 
the operating mode setting. Next is the issue of how the memory controller can be 
told to transition the operating modes of the individual banks. In this paper, we use a 
hardware-based approach to control mode transitions. In this approach, there is a 
watchdog hardware that monitors ongoing memory transactions. It contains some 
prediction mechanism to estimate the time until the next access to a memory bank and 
circuitry to ask the memory controller to initiate mode transitions. The specific hard-
ware depends on the prediction mechanism that is implemented. In this work, we use 
an adaptive next-mode prediction scheme. In this scheme, if a memory bank has not 
been accessed for a while, then it is assumed that it will not be needed in the near 
future. A threshold is used to determine the idleness of a bank after which it is transi-
tioned to a lower energy mode. The threshold is adaptive in the sense that it tries to 
adjust for any mispredictions it has made. Specifically, it starts with an initial thresh-
old, and transitions to the lower energy mode if the bank is not accessed within this 
period. If the next access is to come soon after that (the resynchronization energy 
consumption is more dominant than the savings due to the lower energy mode), mak-
ing the mode transition more energy consuming than if we had not transitioned at all, 
the threshold is doubled for the next interval. On the other hand, if we find that the 
next access comes fairly late, and we were overly conservative in the threshold value, 
then the threshold is reset to the initial value (one could potentially try more sophisti-
cated techniques such as halving the threshold as well). Our objective in this work is 
to demonstrate that using data compression, one can increase the effectiveness of this 
low-power mode management scheme; i.e., we can either put more banks into low-
power modes, or we can use more aggressive (i.e., more energy-saving) low-power 
mode for banks.  

3   Compression-Based Memory Management 

We explore design space in a systematic way, focusing on each design decision sepa-
rately.  
 
Memory Space Division. There are two different ways of dividing a given memory 
space between compressed and uncompressed data. In the “static” strategy, p out of a 
total of m memory banks are reserved for compressed data, whereas the remaining 
banks are allocated for uncompressed data. Obviously, if most of the data manipu-
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lated by the application are not hot (i.e, not frequently accessed), one may want to 
increase p. On the other hand, in the “dynamic” strategy, the number of memory 
banks allocated to compressed and uncompressed data changes dynamically during 
the course of execution. Note that the dynamic strategy is expected to perform better 
than the static one if the behavior of the application changes during the course of 
execution.  

Compression Granularity. Data can be compressed/decompressed in different granu-
larities. In the “fixed granularity” scheme, we divide each dataset (array) into blocks 
of fixed size (e.g., 4KB), and the block sizes for all datasets are the same. Alternately, 
in the “variable granularity” scheme, each dataset (e.g., an array) can have a different 
block size (though all the blocks belonging to a given dataset are of the same size). 
Note that, as a special case of this latter scheme, one can set the block size of each 
dataset to the dataset size (in which case we have only 1 block per array).  

Data Creation/Re-writing Strategy. When the data is created or re-written, we have 
flexibility of storing it in compressed or uncompressed form. In the rest of this paper, 
these two strategies are termed as the “compressed store” and “uncompressed store.” 
Ideally, this decision should be made considering the future use of the data in ques-
tion. It should be noticed that it is also possible to make this decision by analyzing the 
data access pattern exhibited by the application. More specifically, if the compiler can 
determine that a data block will not be used for a long period of time, it can be stored 
in the compressed format. On the other hand, if it will be reused shortly, it can be 
stored in an uncompressed form. This compiler-directed strategy is called “dynamic” 
in the remainder of this paper, since it tunes the store strategy based on the reuse of 
each data block.  

Decompression Strategy. Another important question is when to decompress data. 
One obvious choice is “on-demand” decompression, whereby data is decompressed 
(if it is in the compressed format) only when it is really needed. In contrast, in “pre-
decompression,” data is decompressed before it is actually accessed. This latter alter-
native is only possible when we have extra cycles to pre-decompress data. Also, this 
is a compiler-based strategy in that the compiler analyzes the code, identifies the 
potential reuses of each data block, and inserts explicit pre-decompress calls in the 
code to initiate pre-decompression of data blocks. 

Based on these, Table 2 shows our four-dimensional design space, a subset of 
which is explored in this paper from both energy and performance (execution cycles) 
perspectives. 

Let us now discuss the implementation details of these different memory manage-
ment strategies. Static memory space division is easy to implement. Basically, we 
select a value for p, and use p banks for the compressed data. However, implementing 
dynamic strategy is more involved. This is because we need to decide when to change 
the value of p during the course of execution. To achieve this, we make use the con-
cept of the miscompression rate (or MCR for short), which is the fraction of the data 
accesses where the data is found in the compressed format in memory. Obviously, 
MCR should be reduced as much as possible. Based on MCR, our dynamic memory 
space division strategy operates as follows. If the current MCR is larger than a high-
threshold (high-MCR) we reduce p, and if it is lower than a low-threshold (low-
MRC), we increase p. We do not change p as long as the current MCR value is be-
tween low-MCR and high-MCR. In other words, as long as we are operating between 
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Table 2. Possible strategies for compression/decompression based memory bank manage-
ment. 

Method 
Id 

Space 
Division 

Comp. 
Gran. 

Rewriting 
Strategy 

Decomp. 
Strategy 

1 static fixed dynamic on-demand 

2 static fixed dynamic pre-decomp 

3 static fixed uncompressed on-demand 

4 static fixed uncompressed pre-decomp 

5 static variable dynamic on-demand 

6 static variable dynamic pre-decomp 

7 static variable uncompressed on-demand 

8 static variable uncompressed pre-decomp 

9 dynamic fixed dynamic on-demand 

10 dynamic fixed dynamic pre-decomp 

11 dynamic fixed uncompressed on-demand 

12 dynamic fixed uncompressed pre-decomp 

13 dynamic variable dynamic on-demand 

14 dynamic variable dynamic pre-decomp 

15 dynamic variable uncompressed on-demand 

16 dynamic variable uncompressed pre-decomp 

low-MCR and high-MCR, we assume that the current division of the memory space is 
performing well. Also note that the current MCR value needs to be updated at regular 
intervals. In our current implementation, this is achieved as follows. Each time a 
block is accessed, we check whether it is compressed or not. If it is compressed, we 
increase a counter. At regular intervals (whose period is programmer-tunable), we 
compute the MCR, and change the memory space partitioning between compressed 
and uncompressed data if necessary. 

As far as the compression granularity is concerned, implementing variable granu-
larity is relatively easy if the block size for a given dataset is set to its total size (i.e., 
block size = array size). In this case, only bookkeeping necessary is a data structure 
that keeps track of which datasets are currently in the compressed form and which 
ones are not. However, implementing the fixed block strategy is more challenging, as 
we need to keep track of the status of each data block individually. In order to do this, 
our implementation employs a bit map, where each bit represents the status of a 
block. Consequently, each memory access goes through this bit map to determine the 
status of the data block to be accessed. In this paper, we experimented with only two 
re-writing strategies: uncompressed store and dynamic. We did not consider the com-
pressed store strategy as our initial experiments showed that its performance is ex-
tremely poor (since, due to temporal locality of data, it is not a good idea to store the 
data always in the compressed format). Comparing the two strategies we experi-
mented with, it is easy to see that the dynamic strategy requires extra compiler sup-
port (which will be explained shortly) to measure the reuse distance of the data 
(whereas the static strategy does not need such help).  

Finally, while implementing on-demand decompression strategy is not very diffi-
cult, to implement the pre-decompression strategy, the compiler needs to analyze the 
program and schedule data decompressions ahead of the time. The necessary com-
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piler support for this is similar to that of software-based data prefetching [11]. It is to 
be noted that this pre-decompression scheme can be successful only when we have 
extra cycles to pre-decompress the data. In our current implementation, we use an 
extra (pre-decompression) thread to perform pre-decompressions. This thread shares 
the same resources with the main execution thread. Whenever there are idle cycles, it 
kicks in and performs necessary (soon to be needed) decompressions. In the worst 
case, it may happen that the main execution thread wants to access a block and finds it 
compressed (which means that the pre-decompression thread could not find opportu-
nity to decompress the block in question). If this happens, we proceed by allowing the 
pre-decompression thread to finish its job before the block is accessed. 

In this work, we implement and study a subset of the strategies listed in Table 2. 
There are two main reasons for that. First, some of the strategies in Table 2 do not 
make much sense. Second, by being a bit careful in selecting the subset mentioned, 
one may have a good insight on the trends of interest as far as energy and perform-
ance behaviors are concerned. 

4   Experimental Evaluation 

Table 3 lists the default parameters used in our simulations. We use 4-issue processor 
core with 8K instruction and data caches. Later in our experiments we modify some 
of the parameters given in this table to conduct a sensitivity analysis. Recall that Ta-
ble 1 gives the characteristics of the low-power operating modes used in this work. 

All energy numbers presented in this paper have been obtained using a custom 
memory energy simulator (built upon SimpleScalar simulator). This simulator takes 
as input a C program and a banked memory description (i.e., the number and sizes of 
memory banks as well as available low-power operating modes with their energy 
saving factors and re-synchronization costs). As output, it gives the energy consump-
tion in memory banks along with a detailed bank inter-access time profiles. By giving 
original and optimized programs to this simulator as input, we measure the impact of 
our compression-based strategy on memory system energy. 

All necessary code restructurings for implementing “dynamic” and “pre-decom-
pression” strategies have been implemented within the SUIF framework from Stan-
ford University [8]. To implement the dynamic strategy, we keep track of data reuse 

Table 3. Default simulation parame-
ters used for in experiments. 

Simulation 
Parameter 

   Value 

m 
p 

(High-MCF,Low-
MCF)  

Block Size 

8 
3 
(30%, 5%) 
 
2KB 
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Fig. 1. Normalized energy consumption values with
different methods. 
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information at the array block granularity (instead of array element granularity as 
done in conventional compiler-based locality optimization studies). For this purpose, 
we employ the proposed solution by Wolf and Lam [10], and feed the data block 
information to the compiler. Implementing pre-decompression is very similar to im-
plementing compiler-directed data prefetching. Basically, the compiler predicts future 
use of data and inserts appropriate pre-compression calls (instead of prefetching calls) 
in the code.  

Table 4. Our benchmark codes. 

Bench Brief  Description Numof Lines Energy Consumption (mJ) 

Atr Network address ranslation 626 13.38mJ 

SP All-nodes shortest path algorithm 1028 29.31mJ 

Encr Digital signature for security 1411 36.06mJ 

Wood Color-based surface inspection  978 22.80mJ 

Usonic Feature-based estimation 1005 37.44mJ 

 
We test the effectiveness of our optimization strategy using five benchmark codes. 

Table 4 presents descriptions and important characteristics of these benchmarks. The 
last column in this table gives memory energy consumption when no compres-
sion/decompression is employed but available low-power operating modes are fully 
exploited. While we also have access pointer-based implementations of these bench-
mark codes, in this study we used array-based implementations. 

We focus mainly on five different methods (from Table 2), and Figure 1 gives their 
memory energy consumption values, normalized with respect to the case without 
compression (i.e., with respect to the last column of Table 4). The reason why we are 
focusing on these five methods can be explained as follows. We consider Method 1 as 
the base and obtain the other versions by changing one parameter at a time (see the 
column titles in Table 2). One can observe from Figure 1 that the average energy 
improvement brought about by Method 1 is 29.78%, indicating that our compression-
based scheme can be very successful in practice. Now, if consider Method 9, we can 
see from Figure 1 that its average saving is significantly better than that of Method 1 
(36.66%). To understand this better, we focus on one of our applications (Usonic) and 
present its bank usage behavior. The x-axis in the graph in Figure 2 represents the 
time, and the y-axis gives the total size of the compressed data (on a time quantum 
basis) in terms of the number of banks it occupies. For example, if the y-axis value is 
4.3 at a given time quantum, it means that the total size of the compressed data can 
occupy 4.3 banks. One can conclude from this graph that the amount of bank space 

 
Fig. 2. Bank usage pattern off Usonic over the time (Method 9). 
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occupied for the compressed data varies over the time. Therefore, a strategy (such as 
Method 1), which allocates 3 banks for the compressed data (i.e., p=3 as shown in 
Table 3) throughout the execution, cannot generate the best energy behavior. In other 
words, for the best behavior, the amount of space allocated for the compressed data 
should be varied. In fact, we can see from Figure 1 that dynamic space division is 
beneficial for all applications except one. 

5   Ongoing Work and Concluding Remarks 

Banked-memory architectures enable power savings through low-power operating 
modes. While previous compiler, OS, and hardware based techniques showed signifi-
cant savings in memory energy consumption by making use of these low-power 
modes, this paper demonstrated that further savings are possible if one employs data 
compression. We first described the potential search space, and then evaluated some 
select implementation methods. Our ongoing research includes experimenting with 
more sophisticated strategies (such as the one that allows different block sizes for 
different arrays), and evaluating the impact of our approach on multi-programmed 
workloads.  
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