
M. Danelutto, D. Laforenza, M. Vanneschi (Eds.): Euro-Par 2004, LNCS 3149, pp. 310–317, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Using Data Compression to Increase Energy Savings
in Multi-bank Memories*

M. Kandemir1, O. Ozturk1, M.J. Irwin1, and I. Kolcu2

1 The Pennsylvania State University, University Park, PA, USA
{kandemir,ozturk,mji}@cse.psu.edu

2 UMIST Manchester, M601QD, UK
ikolcu@umist.ac.uk

Abstract. New DRAM technologies such as SDRAMs, RDRAMs, EDRAMs,
CDRAMs and others are vying to be the next standard in DRAMs and improve
upon bandwidth limit of conventional DRAMs. With proliferation of power-
aware systems, banked DRAM architecture has emerged as a promising candi-
date for reducing power. Prior work on optimizing applications in a banked
memory environment has exclusively focused on uncompressed data. While this
may be preferable from a performance viewpoint, it is not necessarily the best
strategy as far as memory space utilization is considered. This is because com-
pressing data in memory may reduce the number of memory banks it occupies
and this, in turn, may enable a better use of low-power operating modes. In this
paper, we explore the possibility of compressing infrequently used data for in-
creasing effectiveness of low-power operating modes in banked DRAMs. Our
experiments with five highly parallel array-based embedded applications indi-
cate significant savings in memory energy over a technique that exploits low-
power modes but does not use data compression/decompression.

1 Introduction

Low power dissipation in portable battery-operated platforms has drawn significant
interest in the past decade. In many applications targeting at embedded platforms, a
large fraction of energy consumption is due to main memory accesses. Recent work
[1, 2, 3, 5] has suggested multi-banking as a way of reducing memory energy con-
sumption. The main rationale behind this approach is that per access energy consump-
tion is proportional to the size of the memory, and a small memory bank consumes
much less (per access) energy than a large monolithic structure. In addition, unused
memory banks in a multi-bank architecture can be placed into low-power operating
modes to further energy savings.

Prior work on optimizing applications in a banked memory environment has exclu-
sively focused on uncompressed data. In other words, the data manipulated by the
application have been kept in memory in an uncompressed form throughout the exe-
cution. While this may be preferable from a performance viewpoint, it is not necessar-
ily the best option as far as memory space utilization is considered. This is because
compressing data in memory may reduce the number of memory banks it occupies

* This research is partly supported by NSF Career Award #0093082.

Using Data Compression to Increase Energy Savings in Multi-bank Memories 311

and this, in turn, may enable a better use of existing low-power operating modes (i.e.,
unused banks can be placed into low-power operating modes).

It is to be noted, however, that there are several important issues that need to be
addressed before one has a reasonable data compression strategy.

• How should the available memory space be divided between compressed and un-
compressed data?

• What should be the granularity of compression? A whole array, a data page, etc.?
• Which compression strategy should be employed when a given data block is to be

compressed/decompressed?

The third question posed above is orthogonal to the ideas explored in this paper.
That is, the proposed strategy can work in conjunction with any data compres-
sion/decompression algorithm. Therefore, without loss of generality, in this paper we
use the algorithm proposed by Kjelso et al [4]. In this work, we concentrate on the
remaining questions and propose a strategy for optimizing the effectiveness of low-
power operating modes. While prior work employed data compression for energy
savings and performance improvement [7, 9], to the best of our knowledge, this is the
first study that considers data compression within the context of banked memory
architectures.

Our strategy divides the available memory space (memory banks) into two disjoint
parts (groups): one that holds compressed data and one that holds uncompressed data.
The main objective here is to keep non-hot data (i.e., the data that are not very fre-
quently used) in the compressed form to the extent possible. Another important issue
here is to cluster the compressed data as much as possible for increasing the effec-
tiveness of low-power modes. The timing for compressions/decompressions is also an
important issue. Typically, one does not want to access data while it is in the com-
pressed form (since it needs to be decompressed before it can be used; and this re-
quires extra cycles in execution). In addition, when a new data is created or an old
data is re-written, one needs to decide whether to store it in compressed or uncom-
pressed form. In the rest of this paper, we focus on a banked memory architecture,
and evaluate several compression-based memory bank management strategies for
making best use of available low-power operating modes in a DRAM-based memory
architecture.

This paper is structured as follows. The next section gives an overview of banked
memory architecture and low-power operating modes. Section 3 presents details of
our compression-based memory management strategy. Section 4 gives experimental
data. Section 5 concludes the paper by summarizing our major results, and giving a
brief discussion of ongoing work.

2 Banked Memory Architecture and Low-Power Operating Modes

We target a memory system that contains a number of banks, each of which can be
energy-controlled independently. To save energy in this architecture, we put unused
memory banks into a low-power operating mode. We assume the existence of three
operating modes for a memory bank: active, napping, and power-down. Each mode is
characterized by its power consumption per cycle and the time that it takes to transi-
tion back to the active mode (referred to as the resynchronization time or resynchroni-
zation cost). Typically, lower the energy consumption, higher the resynchronization

312 M. Kandemir et al.

time. These modes are characterized by varying degrees of the bank components
being active. Table 1 shows our operating modes, their per cycle power consump-
tions, and resynchronization costs.

Table 1. Operating-modes for memory banks.

 Energy Consump tion (nJ/cycle) Resynchronization Cost (cycles)
active 3.570 0

napping 0.320 30

power-down 0.005 9,000

A memory controller that interfaces with the memory bus controls DRAM banks.

The interface is not only for latching the data and addresses, but also to control the
configuration and operation of the individual banks as well as their operating modes.
For example, programming a specific control register in each memory bank could do
the operating mode setting. Next is the issue of how the memory controller can be
told to transition the operating modes of the individual banks. In this paper, we use a
hardware-based approach to control mode transitions. In this approach, there is a
watchdog hardware that monitors ongoing memory transactions. It contains some
prediction mechanism to estimate the time until the next access to a memory bank and
circuitry to ask the memory controller to initiate mode transitions. The specific hard-
ware depends on the prediction mechanism that is implemented. In this work, we use
an adaptive next-mode prediction scheme. In this scheme, if a memory bank has not
been accessed for a while, then it is assumed that it will not be needed in the near
future. A threshold is used to determine the idleness of a bank after which it is transi-
tioned to a lower energy mode. The threshold is adaptive in the sense that it tries to
adjust for any mispredictions it has made. Specifically, it starts with an initial thresh-
old, and transitions to the lower energy mode if the bank is not accessed within this
period. If the next access is to come soon after that (the resynchronization energy
consumption is more dominant than the savings due to the lower energy mode), mak-
ing the mode transition more energy consuming than if we had not transitioned at all,
the threshold is doubled for the next interval. On the other hand, if we find that the
next access comes fairly late, and we were overly conservative in the threshold value,
then the threshold is reset to the initial value (one could potentially try more sophisti-
cated techniques such as halving the threshold as well). Our objective in this work is
to demonstrate that using data compression, one can increase the effectiveness of this
low-power mode management scheme; i.e., we can either put more banks into low-
power modes, or we can use more aggressive (i.e., more energy-saving) low-power
mode for banks.

3 Compression-Based Memory Management

We explore design space in a systematic way, focusing on each design decision sepa-
rately.

Memory Space Division. There are two different ways of dividing a given memory
space between compressed and uncompressed data. In the “static” strategy, p out of a
total of m memory banks are reserved for compressed data, whereas the remaining
banks are allocated for uncompressed data. Obviously, if most of the data manipu-

Using Data Compression to Increase Energy Savings in Multi-bank Memories 313

lated by the application are not hot (i.e, not frequently accessed), one may want to
increase p. On the other hand, in the “dynamic” strategy, the number of memory
banks allocated to compressed and uncompressed data changes dynamically during
the course of execution. Note that the dynamic strategy is expected to perform better
than the static one if the behavior of the application changes during the course of
execution.

Compression Granularity. Data can be compressed/decompressed in different granu-
larities. In the “fixed granularity” scheme, we divide each dataset (array) into blocks
of fixed size (e.g., 4KB), and the block sizes for all datasets are the same. Alternately,
in the “variable granularity” scheme, each dataset (e.g., an array) can have a different
block size (though all the blocks belonging to a given dataset are of the same size).
Note that, as a special case of this latter scheme, one can set the block size of each
dataset to the dataset size (in which case we have only 1 block per array).

Data Creation/Re-writing Strategy. When the data is created or re-written, we have
flexibility of storing it in compressed or uncompressed form. In the rest of this paper,
these two strategies are termed as the “compressed store” and “uncompressed store.”
Ideally, this decision should be made considering the future use of the data in ques-
tion. It should be noticed that it is also possible to make this decision by analyzing the
data access pattern exhibited by the application. More specifically, if the compiler can
determine that a data block will not be used for a long period of time, it can be stored
in the compressed format. On the other hand, if it will be reused shortly, it can be
stored in an uncompressed form. This compiler-directed strategy is called “dynamic”
in the remainder of this paper, since it tunes the store strategy based on the reuse of
each data block.

Decompression Strategy. Another important question is when to decompress data.
One obvious choice is “on-demand” decompression, whereby data is decompressed
(if it is in the compressed format) only when it is really needed. In contrast, in “pre-
decompression,” data is decompressed before it is actually accessed. This latter alter-
native is only possible when we have extra cycles to pre-decompress data. Also, this
is a compiler-based strategy in that the compiler analyzes the code, identifies the
potential reuses of each data block, and inserts explicit pre-decompress calls in the
code to initiate pre-decompression of data blocks.

Based on these, Table 2 shows our four-dimensional design space, a subset of
which is explored in this paper from both energy and performance (execution cycles)
perspectives.

Let us now discuss the implementation details of these different memory manage-
ment strategies. Static memory space division is easy to implement. Basically, we
select a value for p, and use p banks for the compressed data. However, implementing
dynamic strategy is more involved. This is because we need to decide when to change
the value of p during the course of execution. To achieve this, we make use the con-
cept of the miscompression rate (or MCR for short), which is the fraction of the data
accesses where the data is found in the compressed format in memory. Obviously,
MCR should be reduced as much as possible. Based on MCR, our dynamic memory
space division strategy operates as follows. If the current MCR is larger than a high-
threshold (high-MCR) we reduce p, and if it is lower than a low-threshold (low-
MRC), we increase p. We do not change p as long as the current MCR value is be-
tween low-MCR and high-MCR. In other words, as long as we are operating between

314 M. Kandemir et al.

Table 2. Possible strategies for compression/decompression based memory bank manage-
ment.

Method
Id

Space
Division

Comp.
Gran.

Rewriting
Strategy

Decomp.
Strategy

1 static fixed dynamic on-demand

2 static fixed dynamic pre-decomp

3 static fixed uncompressed on-demand

4 static fixed uncompressed pre-decomp

5 static variable dynamic on-demand

6 static variable dynamic pre-decomp

7 static variable uncompressed on-demand

8 static variable uncompressed pre-decomp

9 dynamic fixed dynamic on-demand

10 dynamic fixed dynamic pre-decomp

11 dynamic fixed uncompressed on-demand

12 dynamic fixed uncompressed pre-decomp

13 dynamic variable dynamic on-demand

14 dynamic variable dynamic pre-decomp

15 dynamic variable uncompressed on-demand

16 dynamic variable uncompressed pre-decomp

low-MCR and high-MCR, we assume that the current division of the memory space is
performing well. Also note that the current MCR value needs to be updated at regular
intervals. In our current implementation, this is achieved as follows. Each time a
block is accessed, we check whether it is compressed or not. If it is compressed, we
increase a counter. At regular intervals (whose period is programmer-tunable), we
compute the MCR, and change the memory space partitioning between compressed
and uncompressed data if necessary.

As far as the compression granularity is concerned, implementing variable granu-
larity is relatively easy if the block size for a given dataset is set to its total size (i.e.,
block size = array size). In this case, only bookkeeping necessary is a data structure
that keeps track of which datasets are currently in the compressed form and which
ones are not. However, implementing the fixed block strategy is more challenging, as
we need to keep track of the status of each data block individually. In order to do this,
our implementation employs a bit map, where each bit represents the status of a
block. Consequently, each memory access goes through this bit map to determine the
status of the data block to be accessed. In this paper, we experimented with only two
re-writing strategies: uncompressed store and dynamic. We did not consider the com-
pressed store strategy as our initial experiments showed that its performance is ex-
tremely poor (since, due to temporal locality of data, it is not a good idea to store the
data always in the compressed format). Comparing the two strategies we experi-
mented with, it is easy to see that the dynamic strategy requires extra compiler sup-
port (which will be explained shortly) to measure the reuse distance of the data
(whereas the static strategy does not need such help).

Finally, while implementing on-demand decompression strategy is not very diffi-
cult, to implement the pre-decompression strategy, the compiler needs to analyze the
program and schedule data decompressions ahead of the time. The necessary com-

Using Data Compression to Increase Energy Savings in Multi-bank Memories 315

piler support for this is similar to that of software-based data prefetching [11]. It is to
be noted that this pre-decompression scheme can be successful only when we have
extra cycles to pre-decompress the data. In our current implementation, we use an
extra (pre-decompression) thread to perform pre-decompressions. This thread shares
the same resources with the main execution thread. Whenever there are idle cycles, it
kicks in and performs necessary (soon to be needed) decompressions. In the worst
case, it may happen that the main execution thread wants to access a block and finds it
compressed (which means that the pre-decompression thread could not find opportu-
nity to decompress the block in question). If this happens, we proceed by allowing the
pre-decompression thread to finish its job before the block is accessed.

In this work, we implement and study a subset of the strategies listed in Table 2.
There are two main reasons for that. First, some of the strategies in Table 2 do not
make much sense. Second, by being a bit careful in selecting the subset mentioned,
one may have a good insight on the trends of interest as far as energy and perform-
ance behaviors are concerned.

4 Experimental Evaluation

Table 3 lists the default parameters used in our simulations. We use 4-issue processor
core with 8K instruction and data caches. Later in our experiments we modify some
of the parameters given in this table to conduct a sensitivity analysis. Recall that Ta-
ble 1 gives the characteristics of the low-power operating modes used in this work.

All energy numbers presented in this paper have been obtained using a custom
memory energy simulator (built upon SimpleScalar simulator). This simulator takes
as input a C program and a banked memory description (i.e., the number and sizes of
memory banks as well as available low-power operating modes with their energy
saving factors and re-synchronization costs). As output, it gives the energy consump-
tion in memory banks along with a detailed bank inter-access time profiles. By giving
original and optimized programs to this simulator as input, we measure the impact of
our compression-based strategy on memory system energy.

All necessary code restructurings for implementing “dynamic” and “pre-decom-
pression” strategies have been implemented within the SUIF framework from Stan-
ford University [8]. To implement the dynamic strategy, we keep track of data reuse

Table 3. Default simulation parame-
ters used for in experiments.

Simulation
Parameter

 Value

m
p

(High-MCF,Low-
MCF)

Block Size

8
3
(30%, 5%)

2KB

0
20
40
60
80

100

E
ne

rg
y

C
on

su
m

pt
io

n

Atr SP
Enc

r
Wood

Uso
nic

M ethod-1 M ethod-9 M ethod-5
M ethod-3 M ethod-2

Fig. 1. Normalized energy consumption values with
different methods.

316 M. Kandemir et al.

information at the array block granularity (instead of array element granularity as
done in conventional compiler-based locality optimization studies). For this purpose,
we employ the proposed solution by Wolf and Lam [10], and feed the data block
information to the compiler. Implementing pre-decompression is very similar to im-
plementing compiler-directed data prefetching. Basically, the compiler predicts future
use of data and inserts appropriate pre-compression calls (instead of prefetching calls)
in the code.

Table 4. Our benchmark codes.

Bench Brief Description Numof Lines Energy Consumption (mJ)

Atr Network address ranslation 626 13.38mJ

SP All-nodes shortest path algorithm 1028 29.31mJ

Encr Digital signature for security 1411 36.06mJ

Wood Color-based surface inspection 978 22.80mJ

Usonic Feature-based estimation 1005 37.44mJ

We test the effectiveness of our optimization strategy using five benchmark codes.

Table 4 presents descriptions and important characteristics of these benchmarks. The
last column in this table gives memory energy consumption when no compres-
sion/decompression is employed but available low-power operating modes are fully
exploited. While we also have access pointer-based implementations of these bench-
mark codes, in this study we used array-based implementations.

We focus mainly on five different methods (from Table 2), and Figure 1 gives their
memory energy consumption values, normalized with respect to the case without
compression (i.e., with respect to the last column of Table 4). The reason why we are
focusing on these five methods can be explained as follows. We consider Method 1 as
the base and obtain the other versions by changing one parameter at a time (see the
column titles in Table 2). One can observe from Figure 1 that the average energy
improvement brought about by Method 1 is 29.78%, indicating that our compression-
based scheme can be very successful in practice. Now, if consider Method 9, we can
see from Figure 1 that its average saving is significantly better than that of Method 1
(36.66%). To understand this better, we focus on one of our applications (Usonic) and
present its bank usage behavior. The x-axis in the graph in Figure 2 represents the
time, and the y-axis gives the total size of the compressed data (on a time quantum
basis) in terms of the number of banks it occupies. For example, if the y-axis value is
4.3 at a given time quantum, it means that the total size of the compressed data can
occupy 4.3 banks. One can conclude from this graph that the amount of bank space

Fig. 2. Bank usage pattern off Usonic over the time (Method 9).

Using Data Compression to Increase Energy Savings in Multi-bank Memories 317

occupied for the compressed data varies over the time. Therefore, a strategy (such as
Method 1), which allocates 3 banks for the compressed data (i.e., p=3 as shown in
Table 3) throughout the execution, cannot generate the best energy behavior. In other
words, for the best behavior, the amount of space allocated for the compressed data
should be varied. In fact, we can see from Figure 1 that dynamic space division is
beneficial for all applications except one.

5 Ongoing Work and Concluding Remarks

Banked-memory architectures enable power savings through low-power operating
modes. While previous compiler, OS, and hardware based techniques showed signifi-
cant savings in memory energy consumption by making use of these low-power
modes, this paper demonstrated that further savings are possible if one employs data
compression. We first described the potential search space, and then evaluated some
select implementation methods. Our ongoing research includes experimenting with
more sophisticated strategies (such as the one that allows different block sizes for
different arrays), and evaluating the impact of our approach on multi-programmed
workloads.

References

1. V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam, and M. J. Irwin. DRAM
Energy Management Using Software and Hardware Directed Power Mode Control. In
Proc. the 7th Int’l Symposium on High Performance Computer Architecture, 2001.

2. A. Farrahi, G. Tellez, and M. Sarrafzadeh. Exploiting Sleep Mode for Memory Partitions
and Other Applications. VLSI Design, Vol. 7, No. 3, pp. 271-287.

3. M. Kandemir, I. Kolcu, and I. Kadayif. Influence of Loop Optimizations on Energy Con-
sumption of Multi-Bank Memory Systems. In Proc. International Conference on Compiler
Construction,, 2002.

4. M. Kjelso, M. Gooch, and S. Jones. Performance Evaluation of Computer Architectures
with Main Memory Data Compression. Elsevier Science, Journal of Systems Architecture,
45 (1999), pp. 571-590.

5. A. Lebeck, X. Fan, H. Zeng, and C. S. Ellis. Power-Aware Page Allocation. In Proc. 9th
International Conference on Architectural Support for Programming Languages and Op-
erating Systems, Nov. 2000.

6. 128/144-MBit Direct RDRAM Data Sheet, Rambus Inc., May 1999.
7. B. Abali et al. Memory Expansion Technology (MXT): Software support and performance.

IBM Journal of Research and Development, Vol 45, No 2, 2001.
8. S. P. Amarasinghe, J. M. Anderson, C. S. Wilson, S.-W. Liao, B. R. Murphy, R. S. French,

M. S. Lam and M. W. Hall Multiprocessors from a Software Perspective, IEEE Micro,
June 1996, pages 52-61.

9. L. Benini, D. Bruni, A. Macii, and E. Macii. Hardware-Assisted Data Compression for En-
ergy Minimization in Systems with Embedded Processors. In Proc. DATE, 2002.

10. M. E. Wolf and M. S. Lam. A Data Locality Optimizing Algorithm. In Proc. the ACM
SIGPLAN'91 Conference on Programming Language Design and Implementation, June,
1991.

11. T. Mowry. Tolerating Latency in Multiprocessors through Compiler-Inserted Prefetching.
ACM Transactions on Computer Systems, 16(1):55-92, February 1998.

	1 Introduction
	2 Banked Memory Architecture and Low-Power Operating Modes
	3 Compression-Based Memory Management
	4 Experimental Evaluation
	5 Ongoing Work and Concluding Remarks
	References

