
M. Danelutto, D. Laforenza, M. Vanneschi (Eds.): Euro-Par 2004, LNCS 3149, pp. 468–475, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Path Selection Based Algorithm
for Maximizing Self-satisfiability of Requests

in Real-Time Grid Applications

Mohammed Eltayeb1, Atakan Doğan2, and Füsun Özgüner1

1 Department of Electrical Engineering, The Ohio State University,
2015 Neil Avenue, Columbus, Ohio 43210, USA
{eltayeb,ozguner}@ece.osu.edu

2 Anadolu University, Department of Electrical and Electronics Engineering
26470 Eskişehir, Turkey

atdogan@anadolu.edu.tr

Abstract. Efficient data scheduling in Grid environments is becoming a seem-
ingly important issue for distributed real-time applications that produce and
process huge datasets. Thus, in this paper, we consider the data scheduling
problem so as to provide reliable dissemination of large-scale datasets for the
distributed real-time applications. We propose a new path selection-based algo-
rithm for optimizing a criterion that reflects the general satisfiability of the sys-
tem. The algorithm adopts a blocking-time analysis method combined with a
simple heuristic (LCSP or SLCP). The simulation results show that our algo-
rithm outperforms the algorithms existing in the literature.

1 Introduction

Research in real-time Grid computing is needed to enable Grid services for newly
emerging class of large-scale real-time distributed applications. The amount of data
produced and processed by these new large-scale applications poses a great challenge
on the Grid infrastructure. Let us consider the following example. Assume a distrib-
uted industrial vision and inspection system that provides complex and sensitive in-
spection for industrial facility lines [1]. The vision equipments provide images for the
product, which needs to be analyzed, matched, verified and stored in real-time fash-
ion. A distributed computing system connected by a wide area network, then, pro-
vides an efficient computing environment for distributed inspection tasks on the data-
sets [2]. The large-scale datasets may include a combination of real-time still pic-
tures, thermal images, video clips, etc. Such a system requires transferring huge data-
sets between distributed running tasks. Due to the fact that the datasets are large, an
efficient mechanism must be devised to allow dataset transfer between tasks in re-
mote locations. This mechanism must cater for cases by which a particular dataset is
requested by more than one task in different locations. They also must account for
future requests of a particular dataset and certainly the deadline by which the dataset
is to be delivered to the final destination(s).

Examples of some other distributed real-time applications that share similar fea-
tures of the industrial vision system include distributed medical information and im-

A Path Selection Based Algorithm for Maximizing Self-satisfiability of Requests 469

aging systems [3], computer vision [4], and distributed surveillance applications [5].
In [5], three different heuristics, referred to as PPH, FPH and FPA (Partial Path
Heuristic, Full Path Heuristic, and Full Path All destinations heuristic, respectively),
were proposed for data transfer scheduling with real-time constraints for a defense
information system. In [5], deadlines for requests, each of which represents a data
transfer, were assumed. The goal was to minimize the number of requests that miss
deadlines. Dissemination of datasets was achieved by adopting a data staging
technique by which a transferred data-item is cached in intermediate nodes along the
path of the transfer from the source to the destination of the transfer.

The three aforementioned heuristics (PPH, FPH and FPA) schedule only one re-
quest for transfer along the shortest path from source to destination in each iteration.
Concurrent Scheduling (CS), on the other hand, as proposed in [6], allows a commu-
nication step to include different request transfers simultaneously in an organized
fashion. This is possible because some requests may be achievable through separate
paths. The CS algorithm was built on top of the EPP (Extended Partial Path) heuristic
proposed in [7].

Data replication problem in Grid is related to the dissemination problem and has
been studied to minimize the latency of data transfer as well as to reduce bandwidth
consumption, improve the system reliability and to load balance the requests [8], [9].

In this paper, we facilitate a discussion for real-time Grid computing and issues of
data dissemination and scheduling requirements for large-scale data in distributed
real-time applications. We propose an efficient algorithm for the data dissemination
of these applications.

2 System Model

Our goal is to provide a solution to the data dissemination problem for applications
with large-scale datasets. Thus, we focus on the scheduling the transfer of datasets
rather than scheduling the application tasks. In our system model, we assume that
applications arrive aperiodically online at a specific point (broker and scheduler) by
which the tasks of the applications are mapped and scheduled on the distributed re-
sources. The distributed tasks require large dataset transfers from remote locations
that are determined upon the arrival of the applications. Each task may have one or
more requests for data transfer.

• The network graph G = (V, E) specifies the connectivity of a set of n vertices V =
{V1,…,Vn} and m edges E = {Ei,j: Vi, Vj ∈ V and there is a communication
channel between the vertices}. Each vertex Vi is a node with limited storage ca-
pacity Ci. Each edge Ei,j represents a time delay for the transfer between the end
vertices Vi, Vj. This delay is assumed to be constant on Ei,j.

• A distributed application Aj = {Tj,1 ,…, Tj,kj} is composed of kj tasks running on
several predetermined processing nodes. Each task produces a set of requests to
specific data-items of large, fixed sizes at different times during its execution.

• RTj,i = {rj
i,1,…,rj

i,li} is the set of li requests produced by the ith task Tj,i of appli-
cation Aj .

470 M. Eltayeb, A. Doğan, and F. Özgüner

• Each request rj
i,u is associated with one of χ data-items It (t =1,…,χ) to be trans-

ferred to a destination node Nj
i,u where the corresponding requesting task Tj,i re-

sides.
• Each request rj

i,u is assigned a deadline Dl(rj
i,u) by which the data-item must be

delivered to its destination.
• The request is also assigned a priority value Py(rj

i,u) which is inherited from the

application, which includes the task that produced the request. A request rj
i,u is

hence summarized by the following tuple: ‹It(rj
i,u), Nj

i,u, Dl(rj
i,u), Py(rj

i,u)›.

An achieving path Pr
j
i,u of a request rj

i,u is defined here as a path that has a network

latency less than or equal to the deadline of the request. An achieving path is also
assumed to be simple. A simple path between a source VS and a destination VN (VS ≠
VN) is given as P = {VS ,…,Vi ,…, Vj ,…, VN} and i ≠ j for all Vi, Vj ∈ P. The set of

achieving paths of a request Pr
j
i,u is defined as the collection of all achieving paths

from all sources of the data-item associated with the request rj
i,u. We also assume that

the arrival time of a request is its release time.
Our model also assumes a staging mechanism for data transfers which was pre-

sented in [5]. The data-item associated with a request will be stored in intermediate
nodes for the duration of the deadline of the request associated with the transfer.

3 Problem Statement

Our goal is to satisfy all requests of all tasks present at any specific point of time.
These requests form a batch of data-item transfers with specific deadlines. Due to the
size of the individual data-items and the storage capacity of the intermediate nodes, it
is not possible to accommodate all of the staging at the same time. We are also re-
stricted by the need to allow multiple copies of the data-item exist during a specific
time period for a request. An efficient heuristic should aim at maximizing the satisfi-
ability at all times.

Let δ be a specific schedule of data transfers. A request rj
i,u is satisfied in δ if and

only if the data-item associated with rj
i,u is delivered at the destination node Nj

i,u on or

before the deadline Dl(rj
i,u). Let the set of satisfiable requests by the schedule δ be

defined as S(δ) = {rj
i,u: rj

i,u is satisfied in δ, ∀ j, i, u}. The optimization criterion of the
staging heuristic is provided by the effect of the schedule δ which is defined as:

r ()

() (r)
j

i,u

j
i,u

S

E Py
δ

δ
∈

= ∑

(1)

4 Blocking Analysis Concurrent Scheduling Algorithm (BACS)

The heuristic proposed in this paper employs a data concurrent scheduling (CS)
method and a data blocking analysis (BA) method (hence the name BACS) for data

A Path Selection Based Algorithm for Maximizing Self-satisfiability of Requests 471

transfers to solve the data-scheduling problem. By concurrent scheduling, we mean
that several data-items will be allowed to stage, allowing the service of multiple re-
quests simultaneously. By blocking analysis, we mean that the delays encountered by
the transferred data-items (due to blocking for intermediate storage) will be computed
and used for assigning staging paths.

A blocking along the path occurs when a request competes with another request in
one or more of the intermediate nodes due to limited capacity. Due to this situation,
BACS enforces a special blocking policy. This policy compels the lower priory re-
quests to await before the specific blocking point (a contention node on the path)
until a space adequate for its data-item is available in the contention node. The lower
priority request, in such a case, is called an awaited request or a blocked request. An
awaited request will be blocked at a specific contention node for at least the amount
of time needed to clear the node from the higher priority request.

4.1 BACS with Shortest Least Contending Path (SLCP) First Heuristic

The BACS algorithm attempts to generate an optimum set of paths for the individual
requests. BACS iterates through three phases of execution. The algorithm starts exe-

cution by accepting a batch of requests, each defined by a tuple ‹It(rj
i,u), Nj

i,u, Dl(rj
i,u),

Py(rj
i,u) ›. BACS, then, finds a set of achieving paths for each request from a set of

multiple sources. This is accomplished by running a version of Dijkstra’s shortest
path algorithm for each request which can find a shortest path to a specific node in
the network from multiple sources [5], [10]. These paths are later sorted based on
their lengths for each request.

BACS generates an initial set of paths composed of the shortest path for each re-
quest. It is obvious that this set neither guarantees the satisfiability of all requests nor
maximizes this satisfiability. The reason is simply enforced blocking policy by which
lower priority requests must be blocked for higher priority requests for an amount of
time that is proportional to the individual path lengths.

From the initial set of paths, BACS uses a graphical method to compute the total
delay incurred by each request, which is the first phase of the BACS:

• Determine the effective priorities for all requests. They are computed as the
weight of the task multiplied by the weight of the application:

(r) () (T)j
i,u j j,iPy Py A Py= ×

(2)

where Py(rj
i,u) is the effective priority of rj

i,u, Py(Tj,i) is the priority of task Tj,i,
and Py(Aj) is the priority of application Aj.

• Compute the direct blocking delays between all possible request pairs as ex-
plained in [11]. The amount of time a lower priority request will be blocked at a
contention point is determined by the time needed for the higher priority request
to clear its path (clear the intermediate nodes on the request’s path).

• Finally, in this step, we develop the Blocking Dependency Graph (BDG) for the
requests. Each node in this graph represents a request and each directed edge

472 M. Eltayeb, A. Doğan, and F. Özgüner

represents the awaited time incurred on a request by a higher priority request
sharing the same path as if the two are the only requests in the system. The de-
veloped BDG represents the dependencies between the requests.

Once we have a BDG, it is possible to compute the total end-to-end delays of all
available requests in the batch, which is the second phase. This delay for each request
is the length of the critical path of the request in the resultant DAG and must be equal
to or less than the corresponding request’s deadline in order for the request to be
satisfied. The critical path of a request is the longest path to the request from all
available nodes in the graph and its length represents the total blocking time.

Once the blocking delays are found, it is possible to compute the effect of the
schedule from defined by (1). BACS then checks for the total satisfiability condition
shown by the diamond in the second column. If the condition is not satisfied, the
algorithm performs a path set modification phase.

In the third phase, BACS finds a subset of requests which is referred to as the set
of candidate requests. This set is composed of all requests (represented by nodes) in
the critical path of only unsatisfied requests (or some of the unsatisfied requests).
Then, BACS attempts to modify the path set for the candidate requests. By changing
the path of a higher (blocking) request, it is possible that the delay incurred by a
lower (blocked) request is reduced. The following is performed in this phase:

• Starting from the highest requests in the chain, the algorithm searches for an al-
ternative path.

• The alternative path is the least contending based on the Contention Index (CIX)
function defined in [11] among all achieving paths of the request.

• If two requests with same contention amount exist the shorter is picked first
(hence SLCP).

4.2 Least Contending Shortest Path (LCSP) First Heuristic

In the LCSP heuristic, the algorithm iteratively replaces the paths for each request in
the candidate set produced in the third phase of the algorithm. The following steps are
performed by this heuristic until reaching a feasible solution or exhausting the set:

1. Starting with the highest priority request in the set of candidates, LCSP replaces
its current path with the next shortest path. If two paths are of the same length
the heuristic selects the least contending of the two based on the CIX value de-
fined in [11]. Note that computing the CIX value is performed only when arbi-
tration is needed in this step.

2. The algorithm evaluates the total delays of the requests and computes the effect
value by jumping to the first phase. If no better effect value is found, the next
path for the current request is tested and so on. Once a better effect value is
found for this request, the path of the particular request is fixed.

3. The heuristic moves to another request in the list of candidates and repeats Step
1 and Step 2 until a feasible solution is found or the candidate requests list is
covered. The algorithm exits with the best solution found.

A Path Selection Based Algorithm for Maximizing Self-satisfiability of Requests 473

5 Simulation Results

The performance of the BACS algorithm is tested by simulation in a network of 30
machines with arbitrary topologies. These machines constitute the nodes which can
be sources, destinations and/or intermediate storage locations. Each machine has a
limited capacity equal to a data-item size and all data-items are of the same size. We
tested the performance of the algorithm for the general situation in which the requests
for a particular number of data-items are generated randomly by a subset of the 30
machines with random number of sources and destinations. Random requests are
assumed to arrive at the centralized scheduling unit in batches. The parameters used
to measure the algorithm performance are the number of requests in the batch and the
deadlines of the requests (the urgency of the application). We allowed the load repre-
senting the number of requests to vary between 100 and 600 requests while the dead-
line is set to about 70% of the average path length (500 time units). The performance
is measured as the percentage of satisfied requests as well as the effect value. The
performance of algorithm was also tested by changing the level of urgency of the
applications set be the deadline value. Here, we fixed the load at 500 requests in the
batch (high load situation).

Perf ormance (Satisf iability) v s Deadline
(Load = 500 requests)

0
20
40
60
80

100

20
0

25
0

30
0

35
0

40
0

45
0

50
0

60
0

10
00

20
00

Deadline (Time Unit)

S
at

is
fia

bi
lit

y
(P

er
ce

nt
ag

e)

PPH
CS/EPP(CV)
BACS (LCSP)
BACS (SLCP)

Fig. 1. The performance of the BACS, CS/EPP (CIX=CV) and PPH staging algorithms in terms
of the percentage of satisfied requests at 500 request load.

Fig. 1 shows the performance of BACS, CS/EPP [6] and PPH [5] (FPH and FPA
have been shown to have comparable performance with PPH even with different cost
functions. See [5] for details). BACS shows better performance for the parameters set
of the experiment. The PPH adheres to a method by which only one request is trans-
ferred at a time. This can result in high deadline miss rate for high load conditions.
Although BACS was slightly better than CS/EPP in improving the number of satis-
fied requests, it showed considerable advantage over CS/EPP when the effect func-
tion was evaluated as shown in Fig. 2. This is mainly because BACS algorithm con-
siders the entire batch and not only portions as in CS/EPP. BACS responds very well
when deadlines are relaxed since many paths are considered for staging the requests.
Fig. 3 and 4 show a comparison between the BACS and the CS/EPP when fixing the
deadline and altering the load of the system. BACS shows superiority over CS/EPP
especially at light load situations.

474 M. Eltayeb, A. Doğan, and F. Özgüner

Perf ormance (Ef f ect) v s Deadline
(Load = 500 requests)

0
20
40
60
80

100

200 250 300 350 400 450 500 600 1000 2000
Deadline (Time Unit)

E
ffe

ct
(P

er
ce

nt
ag

e)
 PPH

CS/EPP(CV)
BACS (LCSP)
BACS (SLCP)

Fig. 2. The performance of the BACS, CS/EPP (CIX=CV) and PPH staging algorithms in terms
of the percentage of the priorities of satisfied requests at 500 request load.

Perf ormance (Satisf iability) v s Load
(Deadline = 500 Time Units)

0

50

100

100 200 300 400 500 600
Load (Requests)

S
at

is
fia

bi
lit

y
(P

er
ce

nt
ag

e)
 BACS(SLCP)

BACS (LCSP)

CS/EPP(CV)

Fig. 3. The satisfiability performance of the BACS and CS/EPP as a function of the load.

Perf ormance (Ef f ect) v s Load
(Deadline = 500 Time Units)

0
20
40
60
80

100

100 200 300 400 500 600
Load (Requests)

E
ffe

ct
(P

er
ce

nt
ag

e)
 BACS(SLCP)

BACS (LCSP)

CS/EPP(CV)

Fig. 4. The effect performance of the BACS and CS/EPP as a function of the load. The dead-
lines of all requests are fixed at 500 time units.

6 Conclusions

We have addressed the problem of data scheduling in distributed real-time systems
with large-scale data communications and the need to consider real-time measures for
Grid real-time applications in general. Our goal was to maximize the number of re-
quests that meet their deadlines in a limited capacity environment by adopting the

A Path Selection Based Algorithm for Maximizing Self-satisfiability of Requests 475

data staging scheme for the purpose of data dissemination. We proposed a path selec-
tion-based algorithm which maximized the objectives based on two new heuristics
LCSP and SLCP. The performance of the BACS algorithm is shown by simulation to
be superior to other static staging algorithms. BACS takes a batch of requests and
generates a static schedule that is hopefully close to optimal. It is, however, clear that
the complexity of BACS is higher than these other algorithms since multiple path
search is performed for solving the problem.

References

1. Meliones, A., Baltas, D., Kammenos, P., Spinnler, K., Kuleschow, A., Vardangalos, G.,
Lambadaris, P.: A Distributed Vision Network for Industrial Packaging Inspection. High
Performance Computing and Networking (1999) 1303-1307

2. Thomas, A., Rodd, M., Holt, J., Neill, C.: Real-Time Industrial Visual Inspection: A Re-
view. Journal of Real-Time Imaging (1995) 139-158

3. Lee, J., Tierney, B., Johnston, W.: Data Intensive Distributed Computing: A Medical Ap-
plication Example. High Performance Computing and Networking Conference (1999)

4. Shukla, S. B., Agrawal, D. P.: Scheduling Pipelined Communication in Distributed Mem-
ory Multiprocessors for Real-time Applications. In Annual International Symposium on
Computer Architecture (1991) 222-231

5. Theys, M. D., Tan, M., Beck, N., Siegel, H. J., Jurczyk, M.: A Mathematical Model and
Scheduling Heuristic for Satisfying Prioritized Data Requests in an Oversubscribed Com-
munication Network. IEEE Transaction on Parallel and Distributed Systems, Vol. 11, No.
9. (2000) 969-988

6. Eltayeb, M., Do an, A., Özgüner, F.: Concurrent Scheduling for Real-time Staging in Over-
subscribed Networks. The 16th International Conference on Parallel and Distributed Com-
puting Systems (2003)

7. Eltayeb, M., Do an, A., Özgüner, F.: Extended Partial Path Heuristic for Real-time Staging
in Oversubscribed Networks. The 18th International Symposium on Computer and Infor-
mation Sciences (2003)

8. Lamehamedi, H., Shentu, Z., Szymanski, B. K., Deelman, E.: Simulation of Dynamic Data
Replication Strategies in Data Grids. The Int’l Parallel and Distributed Processing Sympo-
sium (2003)

9. Ranganathan, K., Foster, I.: Decoupling Computation and Data Scheduling in Distributed
Data Intensive Applications. The 11th Int’l Symposium for High Performance Distributed
Computing (2002)

10. Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms. MIT Press, Cambridge,
Massachusetts (1990)

11. Eltayeb, M., Do an, A., Özgüner, F.: A Data Scheduling Algorithm for Autonomous Dis-
tributed Real-Time Applications in Grid Computing. Int’l Conf. on Parallel Processing
(2004)

	1 Introduction
	2 System Model
	3 Problem Statement
	4 Blocking Analysis Concurrent Scheduling Algorithm (BACS)
	4.1 BACS with Shortest Least Contending Path (SLCP) First Heuristic
	4.2 Least Contending Shortest Path (LCSP) First Heuristic

	5 Simulation Results
	6 Conclusions
	References

