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Abstract. Distributed protocols resilient to Byzantine failures are no-
torious to be costly from the computational and communication point
of view. In this paper we discuss the role that collision — resistant hash
functions can have in enhancing the efficiency of Byzantine — tolerant
coordination protocols. In particular, we show two settings in which their
use leads to a remarkable improvement of the system performance in case
of large data or large populations. More precisely, we show how they can
be applied to the implementation of atomic shared objects, and propose
a technique that combines randomization and hash functions. We discuss
also the earnings of these approaches and compute their complexity.

1 Introduction

The widespread use of the Internet and the proliferation of on-line services in-
volving sensitive data, has lead to increasing attacks against the infrastructure.
This motivates the growing interest in the design of distributed protocols re-
silient to arbitrary failures. These failures, often referred as Byzantine failures,
model well both malicious behavior and software bugs, since they make the pro-
cess diverge arbitrarily from the protocol specification. For instance, a Byzantine
process can send arbitrary messages, remain latent for a while and then mount
a coordination attack with other malicious nodes. It is clear that asynchronous
Byzantine-tolerant protocols play a crucial role in the implementation of systems
that must stay always available and correct. However, commercial applications
often implement protocols that are resilient only to crash failures rather than to
Byzantine failures, because they are more efficient though less robust. Clearly,
coping with Byzantine failures increases the complexity of the protocol. For ex-
ample, the number of nodes required to guarantee liveness and safety is larger
than in case of crash failures, and this affects the communication and computa-
tional complexity. The computational cost of masking faulty responses is costly
in case of large data or large populations, since it involves comparisons.

This paper proposes two settings in which collision-resistant hash functions
enhance the system performance in case of large objects and large populations.
It is well-known that hash functions allow to represent any stream of data by
means of a fixed-size string (i.e 128 bit-string) called message digest. This iden-
tification can be considered unique if the function is strongly collision-resistant
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that is, if it is computationally infeasible to find two different objects with the
same mapping. Clearly, replacing an object by its message digest enhances the
performance of the system, optimizes its resources, such as memory utilization
and network bandwidth, and decreases the computational cost of masking faulty
values. Hash functions have been applied to a number of fields to enhance effi-
ciency, such as network protocols, peer to peer systems [12], web caching [13].
For instance, Broder and Mitzenmacher [12] proposed an approach for obtain-
ing good hash tables on using multiple hashes of each input key to improve
the efficiency of IP address look-ups. However, our paper diverges from these
works because it focuses only on collision resistant hash functions (i.e. MD5,
SHA, HMAC). These functions have been applied to secure data dispersal by
Krawczyk [11] to verify the integrity of data stored at servers that might be ma-
licious. Castro and Liskov in [5] apply hash functions to enhance the efficiency
of their atomic protocol resilient to Byzantine failures. More precisely, they use
Message Authentication Codes (keyed hash functions) to authenticate messages
instead of public key signatures, and in the last phase of their protocol servers
return a digest reply while a designated server returns the full object. Notice
that this approach is optimistic since it improves the system performance only if
the designated server is correct, in case of malicious failure the protocol turns to
a slower mode. Our technique improves this idea because it does not only replace
large replies with their message digests, but embeds hash functions in the design
of coordination protocols, in particular atomic protocols, thus exploiting their
inherent properties. This approach leads always to a significant improvement of
the network bandwidth consumption and CPU overhead. Hence, our contribu-
tion comnsists in embedding hash functions in the design of Byzantine-tolerant
atomic protocols to improve their efficiency in case of large data and large pop-
ulations, and in analyzing their benefits over the previous approach. Notice that
the techniques we propose are general and their applicability goes beyond the
settings presented in this paper. We are not aware of similar use of hash functions
in previous Byzantine-tolerant protocols. Our study was originally motivated by
the performance evaluation of the Fleet system [4], a middleware implementing
a distributed data repository for persistent shared objects resilient to malicious
attacks against the infrastructure. Fleet is built on top of Byzantine quorum
system techniques [3] that make the system highly scalable and available, and
improve the system load balancing and the access cost per operation since each
operation is performed across a subset of servers (quorums). Fleet is targeted to
highly critical applications, for instance it was used to implement a prototype of
an electronic voting application [2]. While evaluating the performance of Fleet we
noticed a remarkable performance degrade as the number of processes or the size
of the object increased. This motivated us to look into the underlying Byzantine-
tolerant protocols, and investigate ways to boost their efficiency. In this paper we
show first how hash functions can enhance the efficiency of protocols implement-
ing shared atomic objects, a fundamental building block for distributed systems.
In particular, we propose an optimized version based on message digests, of the
protocol proposed by Chockler et al [1]. The choice of analyzing [1] was moti-
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vated by its quorum approach that improves the system performance for large
populations and makes the use of hash functions particularly suitable. In addi-
tion, we propose an approach that combines randomization and hash functions
and that for its generality can be embedded in most distributed coordination
protocols to enhance efficiency in case of large objects and large universe. We
evaluate the complexity in both settings and discuss their performance impact.

2 Hash Functions Embedded in Atomic Protocols

2.1 An Overview

In this section we show how hash functions can be embedded in the imple-
mentation of atomic shared objects with linearizable semantics [10] to enhance
efficiency and guarantee safety. A replicated object with linearizable semantics
behaves as one single object exists, and the sequence of the operations applied
on it is consistent with the real-time order of the invocations and responses.

Our system model is asynchronous and consists of a static set of n servers,
and a limited but unknown set of clients dispersed in a WAN. Clients can fail
by crash and a fraction of b servers can be compromised. Since it is impossible
in an asynchronous system to distinguish between a crash failure and a slow
process, progress should rely on n — b replies. As a consequence, servers might
have different views of the system.

A protocol implementing a fault-tolerant atomic object can be decomposed
in two building blocks [9]: a leader election protocol to choose a coordinator, and
a 3-phase commit protocol run by it. Notice that the 3-phase commit protocol
is necessary to guarantee data correctness since a leader failure could leave the
system in an inconsistent state. The leader collects in the first phase of the
commit protocol data regarding pending operations, and the current state of
the object. It orders the operations to be performed based on such data (it may
apply them) and then, proposes and commits them. If a leader crashes during
the execution of the commit protocol leaving the system in an inconsistent state,
the next leader needs to re-establish consistency among the replicas. This can be
done by completing the previous run based on data transmitted to servers prior
to crash. For instance, if a leader crashes after the proposed phase and before
contacting b + 1 servers, the next coordinator is unable to recover such data,
unless it is self-verifying (i.e. by means of digital signatures). In fact, usually a
process retrieves the most up-to-date value by computing the most recent value
returned by at least b + 1 servers. To overcome this problem, the coordinator
sends same information in the propose and in the commit phase. Clearly, this
guarantees safety but increases the system overhead in case of large object states.

Such a symmetry can be broken by transmitting in the proposed phase only
the message digest of the full data sent in the commit phase and eventual addi-
tional information. The idea is to reestablish consistency among the replicas by
enabling the coordinator to retrieve the data sent by a previous faulty coordina-
tor or to recompute it by means of previous state and additional data. This idea
will be developed in the next subsection and become part of the optimizations
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of protocol [1]. Due to lack of space, we refer the reader to [1] for details on the
protocol by Chockler et al, and to the technical report [2] for an analysis of [1]
and details and correctness proofs of this optimized version.

2.2 A Specific Scenario: Ordering Operations

The main novelty of the protocol by Chockler et al [1] over previous atomic
protocols resilient to Byzantine failures such as [5][8], lies in its quorum system
approach that enhances its efficiency in case of large populations. The protocol
uses Byzantine quorum systems [3], a variation of quorum systems introduced
by Malkhi and Reiter. A Byzantine quorum system is a collection of subsets of
servers (quorums) such that any two subsets intersects in at least 2b + 1 servers
(consistency), and for any b faulty servers there is a quorum set containing only
correct servers (availability). Communications are performed via quorums: only
a subset of servers is accessed each time. As a result, some servers have out-of-
date object state. This increases the complexity of processing data at the leader
side, and makes the use of message digest particularly suitable in this case,
since it saves a number of unnecessary comparisons. The choice of analyzing this
protocol rather than others is given by its high scalability to large populations
(our focus), its generality (i.e. it supports also non-deterministic operations),
and its efficiency due to quorum systems. Notice that its design improves the
client response time since concurrent clients do not have to wait to become a
coordinator in order to receive a return result.

1) leader « contend() 1) (leader,{o{,o? opsiticq) «— status()
2) if (leader) 2) if (leader)
3)  {of,0r,0psiticq «— getStatus()| 3)  (0°,0P) « computeState()
4)  (0° 0P) < computeState() 4)  if crash in commit phase
5)  if crash in commit phase 5) ¢ « lastCommitted()
6) o «— o° 6) else if crash in proposed phase
7) else if crash in proposed phase | 7) o «— oP
8) o «— of 8)  else
9) else 9) pendings < computeOps()
10) pendings <« computeOps() 10) o? «— ( hash(c®), pendings)
11) o « apply(pendings, c°) 11) o0¢ « apply(pendings, o)
12)  propose(o) 12)  propose(o?)
13)  commit(o) 13) commit(c®)
14)fi 14)fi
Fig. 1. Client side original version. Fig. 2. Client side optimized version.

An Overview of the Original Version. The protocol [1] works by applying
operations to an object state to produce a new state and a return result. An
object state o, is an abstract data type containing the shared object, a sort of
compressed history of the operations applied, and the return results for the last
operations applied. The linearizability of the operations applied, is enforced by
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the order in which the object states are produced. The client side of the protocol
consists of two concurrent threads: a non-blocking thread that simply submits
an operation to quorum and waits for b 4+ 1 identical responses, and a thread
that runs a leader election protocol and a 3-phase commit protocol. An high
level description of the client side of this thread is sketched in Figure 1; of(or
o?) denotes the object state that server S; received in the last commit (or last
propose), and ops; the client requests received by S; and still pending according
to its local view. The client runs a leader election protocol to access replicas
for some fixed time units, line 1:1. If the majority of the correct servers in the
quorum grants such permission, the client executes the 3-phase protocol. It first
collects information regarding the last proposed and commit phase, line 1:3 and,
based on these data detects possible inconsistency among the replicas due to
client crash. In case of leader failure, it completes the previous execution lines
1:5-6, 1:7-8, otherwise applies all the operations that have been submitted but
not yet applied to the last object state, thus generating a new object state, lines
1:10-11. Then, it proposes this new state to quorum and commits it, line 1:12-13.
Notice that in this protocol the proposed object state o is equal to the commit
state 0. An analysis of this protocol sketched in the next subsection, indicates
the object state and the out-of-date data sent by servers that have not been
recently contacted, as the major performance bottleneck. Indeed, because of the
quorum system and the asynchronous system, the list of pending operations at
each server can grow unbounded since a server can receive requests without being
contacted in the commit phase. Since Fleet mechanisms rely on this protocol [1],
this justifies the performance degrade observed by us in Fleet in case of large
objects and large populations. We refer the reader to [2] for a detailed analysis
of this protocol (communication and computational complexity). Partial results
on the performance evaluation of Fleet can be found in [4].

Our Optimized Version. We propose an optimized version of the protocol
whose efficiency is obtained by 1) introducing hash functions, 2) encapsulating
the leader election protocol in the commit protocol and 3) reducing out-of-date
data. An high level description of this optimization can be found in Figure 2; the
variations consist in lines 2:1, 2:5, 2:10 and 2:12-13. Notice that getStatus() is
piggybacked to the leader election protocol, line 2:1. The use of message digests
lets us break the symmetry between the committed and the proposed state: in
fact, the proposed state o consists only of the message digest of the previous
committed state and a signature of the operations applied in that run, line 2:10. In
this version each time a coordinator applies operations, it generates a new o” and
0¢, lines 2:10-11. In case the coordinator crashes right after the proposed phase,
the next leader is able to compute P because the proposed phase was completed,
and can compute the correspondent o€ based on ¢?, line 2:5. Notice that for each
oP there is one and only one committed state that immediately precedes it, and
in case of inconsistencies the coordinator is able to retrieve a correct copy of
it. It verifies the correctness of the previous committed state by means of its
message digest contained in o?. Therefore, procedure lastCommitted() at line
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2:5, looks for the most recent b+ 1 identical commit states, and if it cannot find
them, computes the committed state correspondent to o” by: 1) retrieving the
previous committed state (last state that was fully committed), and 2) applying
to it the operations contained in o”. Details on the correctness proof can be
found in [2].

Communication Complexity. The use of message digests reduces the com-
munication complexity at least by a factor of 2(q—b)(1+|c|—|ops|) with ¢ size of
the quorum and ops signature of operations applied by the coordinator. Notice
that since malicious servers can transmit arbitrary data (though in this way they
are easily detected), we consider only data transmitted by correct servers. The
number of correct servers in a quorum is at least ¢ — b. In addition, the number
of operations applied depends on the degree of concurrency of the system; in
absence of concurrent client requests it is equal to 1. To have a better feeling
of the performance improvement, let us consider a Threshold quorum system
[3] with n = 101, b = 20 and quorum size ¢ = 81. If the shared object is a
100 Mbytes file and the compressed history of the operations up to that time is
equal to 1Mbytes, and the size of the request is equal to 100 Kbytes, then our
proposal reduces the data transmitted by at least 95 Gbytes. Notice that the
communication complexity is also improved by saving one phase of the protocol
and removing operations that have been already applied and that are stored at
out-of-date servers. That is, it reduces the size of ops;.

Computational Complexity. The workload of the protocol lies on the client
side, in particular on computeStatus() at lines 1:4 and 2:3 and on computeOps().
Since their costs depend on the number of malicious and out-of-date servers con-
tacted and on the data corruptness, we compute their computational complexity
in the best and worst case for both versions of the protocol. Here o represent
the full object state. The computational cost in [1] is given by

2(qlol + Y opsi+bY Jol)  O(valol+ Y opsi+b . ol)
i€Q 0€O i€Q

0cOUP

with O set of pending operations and P set of out-of-date operations. In the
optimized version the complexity is

Q(b|0|+20psi+b2|0|) O(b2|0|+20psi+b2|0|)
i€Q

0€0 i€Q 0€0

Notice that since in the optimized version the proposed state is very small in
most cases, the computational cost is reduced almost by half. Clearly, this ap-
proach is not convenient in case the parameters of the operations are greater
than the object itself, but this case is uncommon. Evaluation data performed by
us on Fleet, running this optimized version of the protocol, showed an improve-
ment over the previous protocol [1] by a factor 10 for large objects (i.e > 314
Kbytes) and large universe (i.e. 80 servers).
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2.3 Performance Impact

It is worth noticing that the computation of hash functions such as SHA, HMAC,
MD5, is very fast and that in our proposal the hash function is computed only
in two cases: when an object is generated or updated, and when a coordinator
crashes during the commit phase leaving the replicas in an inconsistent state. In
addition, from a system point of view, each time that an object is transmitted
it is serialized and then deserialized by the receiver to detect the most up-to-
date object. An analysis of Fleet performance running protocol [1] with different
object sizes and on a Java profiler [14] to find performance bottlenecks, identified
the serialization and deserialization of the objects transmitted and received as
main hot spots with respect to memory and CPU usage and time. Notice that the
use of message digests let us bypass this performance bottleneck. This explains
also the remarkable performance improvement obtained in Fleet.

3 A Randomized Approach

In this section we propose an optimistic approach that combines randomization
and hash functions and that has broad applicability. Optimistic protocols run
very fast if no corruptions occurs but may fall back to a slower mode if necessary.
Our idea is based on the following intuition: it is sufficient for a process to
receive one correct full return value, provided a guarantee from other servers of
its correctness (i.e its message digest). Clearly, this approach does not guarantee
a correct return value since it is hard to distinguish a correct process from
a malicious one. Randomization overcomes this problem: in case of very large
objects each correct server replies by sending the full data and its message digest
with probability p, and its message digest with probability 1 —p. Therefore, if the
client contacts n servers the expected number of full correct replies is equal to
(n—0b) p. Forp = % this approach reduces by half the amount of data transmitted
and for n = 3b + 1 the expected number of correct full copies is greater than b.
To retrieve the full correct data, the process performs these two steps:

1. it computes the message digest of the data, denoted by msg, by using a
majority voting;

2. it verifies the correctness of one of the full data received (randomly chosen)
by computing its hash function and comparing it with msg. It returns as
soon as it finds a correct full response.

It might happen that no correct server has sent a full response. In this case,
the client falls back to a slower mode and requests to servers the full response.
Notice that the system could adopt a dynamic strategy and tune p dynamically
depending on the object size and system resources.

If the process receives at least one full correct response (common case if
p is tuned appropriately), the communication complexity is improved at least
by a factor of (1 — p)(n — b)|data|. This optimization is more evident for large
populations and of course for large objects. The analysis of the computational
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complexity is less straightforward. In fact, it is very efficient to compute msg
in step 1, but verifying the correctness of the full data in step 2 is a bit more
expensive than a simple data comparison. Therefore, it is significant to evaluate
the number of hash computations necessary to find a correct full reply, in order
to assess the performance improvement over previous solutions. In the worst
case the process needs to compute b + 1 hash functions, this occurs when the
coordinator picks first b corrupted data sent by malicious servers but with the
correct message digest. Since the process chooses the data to verify uniformly at
random, this bound is very pessimistic and is not representative for the actual
computational cost of step 2. Therefore, we compute the expected number of hash
computations performed by the process before finding a correct response. This
gives us a measure of the computational cost in the average case. The following
lemma computes an upper bound (not tight) of the expected number of hash
computations in a more general case, when not all replicas are up-to-date. We
refer to [2] for the proof.

Lemma 1. If g is the number of correct up-to-date servers that are contacted,
then the expected number of computations of the hash function in the worst case
is less than 2 + g.

Notice that the expected number of g is equal to p m with m number of the
up-to-date correct copies returned by the servers contacted. Therefore, if p = %
then two computations of the hash function are enough on the average to detect
a correct up-to-date reply.

4 Conclusions

In this paper we proposed two settings in which the use of hash functions leads to
a remarkable improvement of system performance in a replicated system resilient
to malicious attacks, and in case of large data and large populations. We have
proposed two techniques, a deterministic and a randomized one, and applied
them to Byzantine-tolerant atomic protocols. These techniques are general and
can be applied to other settings requiring coordination among replicas, and for
which both efficiency and safety are crucial.
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