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Abstract. Bagging is an ensemble method proposed to improve the predictive 
performance of learning algorithms, being specially effective when applied to 
unstable predictors. It is based on the aggregation of a certain number of predic-
tion models, each one generated from a bootstrap sample of the available train-
ing set. We introduce an alternative method for bagging classification models, 
motivated by the reduced bootstrap methodology, where the generated boot-
strap samples are forced to have a number of distinct original observations be-
tween two values k1 and k2. Five choices for k1 and k2 are considered, and the 

five resulting models are empirically studied and compared with bagging on 
three real data sets, employing classification trees and neural networks as the 
base learners. This comparison reveals for this reduced bagging technique a 
trend to diminish the mean and the variance of the error rate.  

1   Introduction 

Bagging (Bootstrap Aggregating) is a method proposed by Breiman [1] to improve 
the performance of prediction models. Given a model, bagging draws B independent 
bootstrap samples from the available training set, fits a particular model to each boot-
strap sample, and finally it aggregates the B models by computing the mean (regres-
sion) or majority voting (classification). Bagging is a very effective procedure when 
applied to unstable learning algorithms such as classification and regression trees and 
neural networks. The empirical success of the first published works has been con-
firmed by theoretical results as we can see in [2], where bagging is shown to smooth 
hard decision problems, yielding smaller variance and mean squared error (MSE). 
These results have been derived for classification and regression trees, but the vari-
ance and MSE reduction effect of bagging is not necessarily true for other models, as 
it is shown in [3] for U-statistics.  

Bagging averages models constructed over nearby empirical distributions corre-
sponding to replacement samples from the training set. However, if we consider other 
classes of neighborhoods of the empirical distribution of the original sample, or if we 
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vary the method to carry out the aggregating process, a more general bagging is de-
fined. The use of robust location measures, as the median, is an example of the sec-
ond approach. For the first approach, we could draw samples with or without re-
placement, and sample sizes not necessarily equal to the training set size would also 
be considered, as is the case for Subbagging (Subsample Aggregating) in [2]. 

If we maintain the replacement sampling process, a generalization is motivated by 
the following reasoning of [4]: bootstrap samples are simple random samples of size 
n selected with replacement from the original n sized sample, so not all bootstrap 
samples are equally informative, due to the randomness associated to the number of 
distinct original observations in the bootstrap sample. The variability of this number 
is neither necessary nor desirable, having negative effects on the performance of the 
bootstrap technique in certain applications. For example, the bootstrap does not pro-
vide a consistent estimator for the variance of the median, but an alternative bootstrap 
resampling scheme which solves that inconsistency is presented in [5]. We propose to 
consider this alternative bootstrap procedure, namely the reduced bootstrap, as the 
sampling algorithm for bagging. In section 2 we present this new method, while sec-
tion 3 is devoted to some empirical comparisons with the usual bagging procedure, 
resuming the main conclusions and the future work in section 4. 

2   Reduced Bootstrap 

We consider a classification problem where a training set D={Ui=(Xi,Yi), i=1,…,n} is 

available. Xi is a realization of a multidimensional predictor variable and Yi contains 

the label of the class of the case i, for example an element of {1,2,…,K} for a K-class 
problem. Given a classification model g, depending on a set of parameters to be op-
timized, bagging was defined in [1] as follows: 

 

Definition 1. Algorithm Bagging 
Fix B 
 For b=1,2,…,B 
  Draw a bootstrap sample, i.e., a simple random sample with replacement 
    D* =(U1

*,…,Un
*) taken from D. 

  Fit g to D*, obtaining gb. 

 Next b. 
The aggregate model gagg is defined by voting of the B computed models: 

                                         )(maxarg)( xfxg j
j

agg =                                           (1) 

                                           })({#)( jxgxf bj ==                                             (2) 

We must note that the bootstrap procedure inside bagging is really what Efron 
called in [6] the bootstrap Method II, used to approximate a theoretical distribution by 
Monte Carlo simulation. However, this simulation process is affected by a series of 
errors and variabilities, as is formalized in [7]. For this reason, several alternative 
techniques have been proposed, as those recorded by [4], [8], [9]. 
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In [7] we defined a variation of Efron´s method II based on the outlier bootstrap 
sample concept, namely OBS, that is based on only considering those bootstrap sam-
ples having a number of distinct original observations dn greater or equal to some 

value computed from the distribution of such random variable dn. Several empirical 

studies carried out in [7] showed closer estimations of the parameters under study and 
a reduction of the standard deviations of such estimations. These results were theo-
retically confirmed in [10]. 

In this paper we consider a generalization of the OBS method, that consists of 
drawing bootstrap samples verifying k1≤dn≤k2 for some 1≤ k1≤k2≤n. We will name 

RB (Reduced Bootstrap) to this method. This way, only αnn bootstrap samples are 
considered, where α=P[k1≤dn≤k2]. The use of RB inside a bagging procedure lets us 

to define Bagging with Reduced Bootstrap. We will name Rbagging the resulting 
procedure. 

 

Definition 2. Algorithm Rbagging. 
Fix B, k1, k2 

 For b=1,2,…,B 

  Draw a reduced bootstrap sample, i.e., a bootstrap sample D*= ),,( **
1 nUU �   

     with ,2
*

1 kdk n ≤≤ taken from D 

  Fit g to D*, obtaining gb 

Next b. 
  
The resulting aggregated model is also computed as in (1) and (2). To obtain a 

bootstrap sample D* with ,2
*

1 kdk n ≤≤ we propose the next algorithm. 
 

Definition 3. Algorithm Reduced Bootstrap Sampling. 
1. Select a random sample of size k2 without replacement from {1,…,n}, say I1 

2. Select a random sample of size k1 without replacement from I1, say I2 

3. Draw a random sample of size n-k1 with replacement from I1 say I3 

4. Let L=(l1,…,ln) be a vector whose components are obtained by randomly  

    permuting the string formed by concatenating I2 and I3 

5. The sample obtained taking the elements of D indexed by (l1,…,ln) is a  

    bootstrap sample D* =(U1
*,…,Un

*), with .2
*

1 kdk n ≤≤  
 

In [5], six choices for k1 and k2 are proposed in a study about the consistent estima-

tion of the variance of the sample median, including the usual bagging as a particular 
case. Because of its good performance, we have used these selections to study the 
performance of Rbagging. The six resulting methods are presented in table 1, being 
identified by RB1,…, RB6, where p=1-1/e, q=1-p. Note that RB1 is the original 
method II presented by Efron, while RB2 and RB6 are particular cases of the OBS 
method. 
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Table 1. The six selections for k1 and k2 

Method k1 k2 

RB1 1 n 
RB2 [np-(npq)1/2]+1 n 

RB3 [np-(npq)1/2]+1 [np+(npq)1/2] 
RB4 [np]+1 [np]+1 
RB5 [np+(npq)1/2]+1 [np+(npq)1/2]+1 
RB6 [np+(npq)1/2]+1 n 

3   Numerical Results 

We have made an empirical comparison of the six considered methods over three real 
data sets. Two unstable classification models, classification trees and neural net-
works, are used as the base algorithm. R system [11] has been the selected computa-
tional tool for our study, whereas the tree and nnet libraries have provided us with the 
implementation of classification trees and multiplayer perceptrons, respectively. Tree 
library is based on the CART methodology [12] proposed by Breiman. Nnet library 
fits single-hidden-layer neural networks by a quasi-Newton method (also known as a 
variable metric algorithm), specifically that published simultaneously in 1970 by 
Broyden, Fletcher, Goldfarb and Shanno. We have used the logistic activation func-
tion in the hidden layer and the identity function as the activation function for the 
output layer, selecting the hidden layer size by cross validation. 

3.1  Fragile X Syndrome Data 

Fragile X is the most common inherited cause of mental impairment and the most 
common known cause of autism. In 1991, the gene (called FMR1) that causes Fragile 
X was discovered. In individuals with Fragile X, a defect in FMR1 (a "full mutation") 
shuts the gene down. Symptoms of fragile X include: mental impairment, ranging 
from learning disabilities to mental retardation, attention deficit and hyperactivity, 
anxiety and unstable mood, autistic-like behaviors, long face, large ears, flat feet, and 
hyperextensible joints, especially fingers. A DNA based test to diagnose Fragile X 
was developed in 1992. This test is quite accurate, and it can detect both carriers and 
fully-affected individuals. However it can be very expensive, and for this reason, an 
automatic classification model would be acknowledged, motivating a study con-
ducted in Andalusia, Spain, where 100 FMR1 mutated children and 72 children with 
Fragile X symptoms but not mutated were selected, being the last 72 the control 
cases. From the 61 recorded variables, we selected those variables retained by a step-
wise logistic regression analysis performed with SPSS v11.0, reducing to 9 the num-
ber of predictor variables. 
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We randomly divided the data set into training (80%) and test (20%) sets, and we 
applied the six bagging procedures with B=100 to the classification tree and muti-
layer perceptron with 12 hidden nodes, computing the error rate (percent of incor-
rectly classified cases) for both data sets for each method. The whole procedure were 
independently repeated 50 times. Table 2 shows the mean and standard deviation of 
the 50 test error rates for each bagging procedure, where “raw” denotes no bagging. 

Table 2. Fragile X Syndrome data. Mean and standard deviation of the 50 test error rates for 
each procedure 

 Classification trees Multilayer perceptron 

Method Mean S.D. Mean S.D. 
Raw  5.652 5.111 5.403 4.592 
RB1 5.977 5.043 5.607 4.919 
RB2 5.225 4.584 5.285 4.675 
RB3 5.799 5.524 5.388 4.571 
RB4 5.225 4.828 5.669 4.958 
RB5 5.448 4.629 5.375 5.203 
RB6 5.577 4.388 5.329 4.549 

 
Fig. 1. Distribution of the 50 test mean error rates for the raw and bagged classification trees 
(left) and multilayer perceptrons with 12 hidden nodes (right) for the fragile X syndrome data 
 

We can see in table 2 and figure 1 that for both models the mean error rate is in-
creased when bagging is applied. However, for classification trees reduced bagging 2, 
4, 5 and 6 yield a lower mean error rate, accompanied by a lower variance of the error 
rate. A similar comparative performance is observed for the multiplayer perceptron, 
with the exception of an increase in the variability of RB5 (motivated by two out-
liers), though RB3 also offers a reduction in the mean and standard deviation of the 
test error rate. We must note that RB2, a reduced bagging based on OBS bootstrap, 
produces the minimum mean error rate and a clear reduction of the variability, for 
both classification models. 
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3.2   Forensic Glass Data 

The forensic glass dataset has 214 points from six classes with nine measurements, 
and provides a fairly stiff test for classification methods. As in 3.1, we randomly 
divided the data set into training (80%) and test (20%) sets, applying the six bagging 
procedures with B=100 to the classification tree and mutilayer perceptron with 15 
hidden nodes, also computing the error rate (percent of incorrectly classified cases) 
for both data sets for each method. The whole procedure were independently repeated 
50 times, and the main results are exhibited in table 3 and figure 2.  

Table 3. Forensic glass data. Mean and standard deviation of the 50 test error rates for each 
procedure 

 Classification trees Multilayer perceptron 

Method Mean S.D. Mean S.D. 
Raw  32.662 3.211 50.761 13.141 
RB1 23.441 2.334 39.627 10.892 
RB2 23.239 2.441 39.243 24.924 
RB3 23.621 2.178 39.426 10.010 
RB4 23.622 2.156 39.042 9.326 
RB5 23.337 2.561 40.572 9.964 
RB6 23.620 2.357 39.624 9.153 

 

Fig. 2. Distribution of the 50 test mean error rates for the raw and bagged classification trees 
(left) and multilayer perceptrons with 15 hidden nodes (right) for the forensic glass dataset 

Figure 2 (left) shows the box-and-whisker plots for the classification tree, where a 
clear reduction in the mean error rate is observed for all the six bagging procedures. 
However, a slight additional reduction with RB2 and RB5 is observed, though last 
method has a greater variability. Figure 2 (right) contains a similar representation for 
the multiplayer perceptron. The bests results are also achieved by RB2, with a great 
reduction in the mean percent error rate and in its variability. 
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3.3   South Africa Heart Disease Data 

This dataset, utilized in [13], contains 463 cases selected from a larger retrospective 
sample of males in a heart-disease high-risk region of the Western Cape, South Af-
rica. The target is the absence/presence of a coronary heart disease, existing nine 
predictor variables. A similar study as in 3.1 and 3.2 were conducted: we randomly 
divided the data set into training (80%) and test (20%) sets, applying the six bagging 
procedures with B=100 to the classification tree and mutilayer perceptron with 12 
hidden nodes, also computing the error rate (percent of incorrectly classified cases) 
for both data sets for each method. The whole procedure were also independently 
repeated 50 times. Table 4 shows the mean and standard deviation of the 50 test error 
rates for each bagging procedure, and the whole distributions are plotted in the fig-
ure 3. 

Table 4. South Africa heart disease data. Mean and standard deviation of the 50 test error rates 
for each procedure 

Classification trees Multilayer perceptron  
Method Mean S.D. Mean S.D. 
Raw  33.217 4.398 34.434 4.783 
RB1 31.173 4.350 34.134 5.042 
RB2 30.693 4.572 34.326 4.143 
RB3 30.608 4.355 34.413 4.378 
RB4 30.630 4.295 34.413 4.433 
RB5 31.021 4.082 34.086 4.313 
RB6 30.562 4.082 34.108 4.358 

 

 

Fig. 3. Distribution of the 50 test mean error rates for the raw and bagged classification trees 
(left) and multilayer perceptrons with 12 hidden nodes (right) for the South Africa heart disease 
dataset 

We see that the five reduced bagging procedures yield a mean percent error rate 
lower than the raw and bagged classification trees, standing out the reduced bag-
ging 6, which also provides the minimum standard deviation, as it is confirmed by the 
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figure 3 (left). For the multiplayer perceptron the bagging procedure is not so clearly 
improved, but the procedures rbagging 5 and 6 provide the lowest mean values, ac-
companied by a standard deviation lower than that achieved by the usual bagging 
procedure. This better performance, particularly for rbagging 6, is more clearly illus-
trated in the figure 3 (right). 

4   Concluding Remarks 

The alternative bagging methodology based on reduced bootstrap sampling shows 
good and hopeful results. It has outperformed the usual bagging in our empirical 
study over real data sets, at least one rbagging method which offers a lower mean and 
variance of the test error rate is found for each data set. 

However, a further study may be realized following some guidelines, for example: 
the theoretical study of the properties of rbagging, the development of criteria to 
select the parameters k1 and k2, a comparison with other ensemble methods, to ana-

lyze the effect of rbagging over other learning algorithms, and the application to 
prediction problems. 
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