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Abstract. Principal component analysis (PCA) is widely used in signal process-
ing, pattern recognition, etc. PCA was extended to the relative PCA (RPCA).
RPCA provides principal components of a signal while suppressing effects of
other signals. PCA was also extended to the kernel PCA (KPCA). By using a
mapping from the original space to a higher dimensional space and its kernel,
we can perform PCA in the higher dimensional space. In this paper, we propose
the kernel RPCA (KRPCA) and give its solution. Similarly to KPCA, the order
of matrices that we should calculate for the solution is the number of samples,
that is ‘kernel trick’. We provide experimental results of an application to pattern
recognition in order to show the advantages of KRPCA over KPCA.

1 Introduction

Principal component analysis (PCA) or Karhunen-Loève transform is widely used in
signal processing, pattern recognition, etc [1], [2], [3]. We can extract important com-
ponents of a signal that minimize the mean square error between the extracted and the
original signals. Consider that input vectors are in a D-dimensional real vector space
RD with the inner product 〈 f , g〉 and the norm ‖ f ‖ = √〈 f , f 〉 for vectors f and g. Let
P be a matrix. PCA is defined by minimizing the following criterion

E f ‖P f − f‖2 (1)

under the condition that rank(P) ≤ d for any d ≤ D, where E f is the ensemble average

with respect to a signal f . Let R f = E f f f T be the correlation matrix of f , where f T is
the transpose of f . The vector φn is given as the eigen vector corresponding to the n-th
largest eigenvalue of R f . The solution of the PCA P is given as
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P =
d∑

n=1

φnφ
T
n . (2)

We consider the case that there exist two signals f and g and the principal compo-
nent of f is obtained while the effect of g is suppressed. When g is noise, we can extract
the principal components of a signal f in the presence of noise. When g is a pattern in
other categories, we can extract the features of f that are not closed to the features of g.

By extending eq.(1) the relative PCA (RPCA) or the relative Karhunen-Loève trans-
form was proposed [4], [5]. Consider that a matrix X minimizes the following criterion:

E f ‖X f − f‖2 + αEg‖X g‖2 (3)

under the condition that rank(X) ≤ d for any d. The parameter α(> 0) controls the
weight for suppressing the effect of g. With a large α, the effect of g is suppressed well.
With a small α, the approximation error between X f and f is decreased.

The solution of RPCA is given as the form:

X =
d∑

n=1

φn(ϕn)T . (4)

Here, we describe its solution when R f + αRg is not singular. Let µn (µ1 ≥ µ2 ≥ · · · ≥
µD) be eigenvalues and let ψi be corresponding eigen vectors of R f (R f + αRg)−1R f .

Then, the solution is given as φn = ψn and ϕn = (R f +αRg)−1R fψn. From eq.(4) the n-
th relative principal component of f is given as 〈 f ,ϕn〉φn. When d = D, X is reduced to
Wiener filter, which provides the best approximation of a signal in sense of mean square
error. A similar criterion with eq.(3) was provided for the rank reduced Wiener filter.
However, the reason why they restrict the rank is not for obtaining principal components
but for robustness [6].

The advantages of RPCA over PCA were shown by experiments of data compres-
sion in the presence of noise [4] and handwritten character recognition [5].

As for PCA with two kinds of signals, Fisher discriminant [7] and Oriented PCA
(OPCA) [3] were proposed. OPCA is defined by vectors φn that minimize

E f 〈 f ,φn〉2
Eg〈g,φn〉2

(5)

under the condition that 〈φm,R fφn〉 = 0 and 〈φm,Rgφn〉 = 0 for m � n. The theoretical
advantage of RPCA over them is in that the criterion of RPCA compares the approx-
imation error between principal components and the original signal directly. Then, it
provides the principal components of which accuracy is guaranteed.

PCA was extended to another direction based on a kernel. The kernel PCA (KPCA)
is defined as follows [8], [9], [10], [11], [12], [13]. Let Φ be a mapping from a input
vector space RD to a real Hilbert space H . The inner product 〈x, y〉 is also defined for
vectors x and y inH . Furthermore, we assume 〈Φ( f ), Φ(g)〉 = k( f , g), where k( f , g) is
a kernel function. Let { f l}Ll=1 be a set of samples of a signal. WhenH is a vector space,
a sample correlation matrix S f inH is given as
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S f =
1
L

L∑

l=1

Φ( f l)Φ( f l)
T . (6)

Let Vn be the eigen vector corresponding to the n-th largest eigenvalue of S f . For an
input vector f , the magnitude of the n-th principal component is given as 〈Vn, Φ( f )〉.
However, for obtaining the magnitude we don’t need to calculate the eigenvalue prob-
lem in H , which is a very high or infinite dimensional space. The advantage of the
theory of KPCA is that we can reduce the dimension for the calculation to the number
of samples L. Fisher discriminant was also extended to the kernel Fisher discriminant
[14], [15], [16].

Since a signal contains noise in almost all cases or suppression of the effect of other
categories is useful in many cases, the kernelization of RPCA is very important as well
as the kernelization of PCA. In this paper, we propose the kernel relative PCA (KRPCA)
which is a kernel based extension of RPCA. We provide the definition and its solution
in this paper. The dimension of a space for the calculation is the number of samples.
Different from other many kernelized problems such as support vector machine (SVM),
the solution that minimizes the criterion of KRPCA is given by a closed form, that is,
it can be provided by eigen vectors and inversion of matrices similarly to KPCA. Fur-
thermore, since it provides the relative principal components, it can be applied not only
to discrimination but also to many problems such as feature extraction and dimensional
reduction. In order to show the advantage of KRPCA, we show experimental results of
an application to pattern recognition.

2 Kernel Relative PCA

In this section, we provide the definition and a solution of KRPCA.
Schatten product x ⊗ y for vectors x and y inH is defined as a linear operator from

H toH such that (x⊗ y)z = 〈z, y〉x for any z ∈ H [17]. It is an abstract notation of xyT

for vectors in a Hilbert space.
Let { f l}Ll=1 be a set of samples, of which principal components are extracted. Let

{gm}Mm=1 be a set of samples of which effect is suppressed. We define the criterion of
KRPCA X as minimizing

J =
1
L

L∑

l=1

‖XΦ( f l) −Φ( f l)‖2 +
α

M

M∑

m=1

‖XΦ(gm)‖2 (7)

under the conditions that rank(X) ≤ d and its null space includes the orthogonal sub-
space of the subspace spanned by { f l}Ll=1 and {gm}Mm=1.

For brief, let f i+L = gi (i = 1, 2, · · · ,M) and N = L + M. Since all vectors in the
criterion(7) are in a subspace spanned by Φ( f i) (i = 1, 2, · · · , L, L + 1, · · · ,N), we can
assume that X is expressed with an (N,N)-matrix A = (ai j) as

X =
N∑

i=1

N∑

j=1

ai jΦ( f i) ⊗Φ( f j) (8)
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Let 0mn be (m, n)-matrix of which all elements are zero. We define (L, L)-matrix K0,
(N, L)-matrix K1, (N,M)-matrix K2, (N,N)-matrix K̃1, (N,N)-matrix K̃2, (N,N)-matrix
K, and (N,N)-matrix K̃ as

K0 =




k( f 1, f 1) · · · k( f 1, f L)
...

. . .
...

k( f L, f 1) · · · k( f L, f L)



,

K1 =




k( f 1, f 1) · · · k( f 1, f L)
...

. . .
...

k( f N , f 1) · · · k( f N , f L)



, K2 =




k( f 1, f L+1) · · · k( f 1, f N)
...

. . .
...

k( f N , f L+1) · · · k( f N , f N)



,

K̃1 =

[
1√
L

K1 0NM

]
, K̃2 =

[
0NL

√
α

M
K2

]
, K = [K1 K2] , K̃ = K̃1 + K̃2.

It is clear that K1KT
1 = LK̃1K̃T

1 , αK2KT
2 = MK̃2K̃T

2 , and K̃1K̃T
1 + K̃2K̃T

2 = K̃K̃T . For a
matrix B there exists an unique matrix C such that BCB = B, CBC = C, (BC)T = BC,
and (CB)T = CB. The matrix C is called the Moore-Penrose generalized inverse matrix
and denoted by B† [18]. A symmetric matrix B is called the positive semi-definite if
and only if 〈Bx, x〉 ≥ 0 for any x. For a positive semi-definite matrix B, there exists a
positive semi-definite matrix C such that CC = B. We denote the matrix C by B1/2. We
define a matrix A0 as

A0 = K†K̃1K̃T
1 (K̃K̃T )†. (9)

Let λi (λ1 ≥ λ2 ≥ · · · ≥ λN) be eigenvalues of K1/2A0K̃(K1/2A0K̃)T , which is a symmet-
ric matrix, and let ui be the corresponding eigen vectors such that {un}Nn=1 is an orthonor-
mal basis. When λn � 0, let vn = ((K1/2A0K̃)T un)/

√
λn. When λn = 0, we can chose

any vn such that {vn}Nn=1 is an orthonormal basis. The i-th element of an N-dimensional
vector w is denoted by (w)i.

Theorem 1. A KRPCA X is given as

X =
N∑

i=1

N∑

j=1




d∑

n=1

(
(K1/2)†un

)
ṽT

n




i j

Φ( f i) ⊗ Φ( f j), (10)

where
ṽn =

√
λn(K̃†)T vn. (11)

For an input vector f , let

h = (k( f , f 1), k( f , f 2), · · · , k( f , f N))T . (12)

Then, XΦ( f ) is given as

XΦ( f ) =
N∑

i=1

d∑

n=1

〈h, ṽn〉
(
(K1/2)†un

)
i
Φ( f i). (13)
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The n-th kernel relative principal component of f with respect to g is given as

N∑

i=1

〈h, ṽn〉
(
(K1/2)†un

)
i
Φ( f i). (14)

Furthermore, we have

‖XΦ( f )‖2 =
d∑

n=1

|〈ṽn, h〉|2 (15)

and

‖XΦ( f ) −Φ( f )‖2 = k( f , f ) +
d∑

n=1

{|〈ṽn, h〉|2 − 〈ṽn, h〉〈(K1/2)†un, h〉}. (16)

Outline of the Proof
We can expand the sum in eq.(7) and simplify to

J = ‖K1/2AK̃ − K1/2A0K̃‖22 − tr[K̃T AT
0 KA0K̃] +

1
L

tr[K0]. (17)

where ‖ · ‖2 is the Frobenius norm of a matrix. From eq.(17), J is minimum subject to
rank(A) ≤ d if and only if ‖K1/2AK̃ − K1/2A0K̃‖22 is minimum with the condition. From
the definitions of un and vn, by considering SVD of K1/2A0K̃, J is minimum subject to
rank(A) ≤ d if and only if

K1/2AK̃ =
d∑

n=1

√
λnunvT

n . (18)

Note that the sum of (18) is truncated by d. Then, we have

A = (K1/2)†
d∑

n=1

unṽT
n . (19)

Then, eq.(10) is proved. Furthermore, XΦ( f ) is given as

XΦ( f ) =
N∑

i=0

(Ah)iΦ( f i) =
N∑

i=1

d∑

n=1

〈h, ṽn〉
(
(K1/2)†un

)
i
Φ( f i). (20)

The rest of the proof is clear. �

3 Application to Pattern Recognition

In order to show the advantage of KRPCA, we provide an experimental result of hand-
written character recognition.

Let Ωc be the learning sample set for a category c (c = 1, 2, · · · ,NC). The matrix Pc

and the operator P′c of PCA and KPCA for the category Ωc are decided as minimizing

1
|Ωc|
∑

f ∈Ωc

‖Pc f − f‖2, 1
|Ωc|
∑

f ∈Ωc

‖P′cΦ( f ) −Φ( f )‖2
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subject to rank(Pc) and rank(P′c) are fixed, respectively, where |Ωc| is the number of
samples in Ωc.

The matrix Xc and the operator X′c of the RPCA and the KRPCA for a category c is
decided as minimizing with a parameter α

1
|Ωc|
∑

f ∈Ωc

‖Xc f − f ‖2 + α 1
|Ωx|

∑

g∈Ωx

‖Xc g‖2, (21)

1
|Ωc|
∑

f ∈Ωc

‖X′cΦ( f ) −Φ( f )‖2 + α 1
|Ωx|

∑

g∈Ωx

‖X′cΦ(g)‖2 (22)

subject to rank(Xc) and rank(X′c) are fixed, respectively, where Ωx is the set of sam-
ples which are suppressed. We call Ωx the suppression set. In the above criterion, the
notations f and g express patterns in the own and the others categories, respectively.

An unknown pattern h is discriminated as the category c for each method, when for
all b � c we have

‖Pch − h‖2 < ‖Pbh − h‖2, ‖P′cΦ(h) −Φ(h)‖2 < ‖P′bΦ(h) −Φ(h)‖2,
‖Xch − h‖2 < ‖Xbh − h‖2, ‖X′cΦ(h) −Φ(h)‖2 < ‖X′bΦ(h) −Φ(h)‖2.

In cases of PCA and KPCA since Pc and P′c are orthogonal projection matrix and opera-
tor, ‖Pch−h‖2 and ‖P′cΦ(h)−Φ(h)‖2 are minimum if and only if ‖Pch‖2 and ‖P′cΦ(h)‖2
are maximum, respectively. Usually the latter rules are used as the discriminant laws.

In point of view of the learning set, KPCA and KRPCA use the same learning set.
In point of view of calculation complexity, the dimension of the space where we have
to calculate is the number of learning samples used for evaluations. For KPCA and
KRPCA the numbers are given as |Ωc| and |Ωc| + |Ωx|, respectively. Therefore, it is
difficult to use all samples, which do not belong to Ωc, for the suppression setΩx. Then,
we fix |Ωx| as Nx. Consider a value t(g) = ‖P′cΦ(g)‖/‖P′bΦ(g)‖ for a pattern g in Ωb

(b � c). Let tNx be the Nx-th largest value among t(h) for all patterns h in Ωb (b � c).
We add the pattern g to the suppression set Ωx with respect to Ωc when t(g) is not less
than tNx .

3.1 Data

We use US Postal Service database (USPS) which contains 7291 training patterns and
2007 test patterns collected from real-life zip codes. It has ten categories from ’0’ to ’9’
(Nc = 10). For a preprocessing we use the weighted direction index histogram method
and the variable transformation [19].

3.2 Result

The following kernel is used in this experiment for KPCA and KRPCA.

k( f , g) = (〈 f , g〉 + 1)20. (23)
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Table 1. Result of handwritten character recognition.

METHOD ERROR RATE (%) RANK α |Ωx |
PCA 5.38 9 –
RPCA 4.91 12 10−2.5 25
KPCA 4.43 150 –
KRPCA 3.49 20 10−4.0 150
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Fig. 1. (a) Parameter α and error rate by KRPCA(rank=20) (|Ωx| = 150). (b) Rank and error rate
in KRPCA(α = 10−4.0, |Ωx | = 150) and KPCA.

We show the best error rate of the test set for each method among various ranks and
values of the parameter α, |Ωx| in Table 1. We show the relation between the parameter
α and the error rate of KRPCA in Figure 1 (a). We also show the relation between the
ranks and the error rates of KPCA and KRPCA in Figure 1 (b).

We can see from Table 1 that KRPCA performs the best recognition rate. We can
also see from Figures 1 (a) and (b) that KRPCA outperforms KPCA for any α > 10−4

and for any rank of operators, respectively.

4 Discussion

4.1 Computational Complexity

In the construction stage, the computational complexity to calculate a matrix of KRPCA
is several times higher than that of KPCA. The dominant parts of computations are as
follows.

– KPCA
the kernel function: L2 times
the eigen value problem of an (L, L)-matrix: 1 times

– KRPCA
the kernel function: N2 times
the inversion of an (N,N)-matrix: 2 times
the SVD of an (N,N)-matrix: 1 times
the square root of a symmetric (N,N)-matrix: 1 times
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In the recognition stage, since many terms in eq.(16) can be calculated in advance,
the dominant parts of computations are as follows.

– KPCA
the kernel function: L times
multiplication of elements: DL times

– KRPCA
the kernel function: N times
multiplication of elements: 2DN times

where D is the rank of each operator. In case of the experiment in Section 3, L = 729
and N = 879 in average and D = 150 for KPCA and D = 20 for KRPCA to achieve
minimum error rates. In this case, the computational complexity of KRPCA is less than
that of the KPCA in the recognition stage.

4.2 Comparison with Other Kernel Machines

SVM has the problem that training needs enormous computational cost because the
optimization problem becomes very large. It depends on the complexity of the prob-
lem and the number of samples belonging to both its own and all rival classes. If the
total number of samples is very large, kernel fisher discriminant (KFD) also has the
same problem. On the other hand, KPCA and KRPCA are trained by the samples of
its own class only and by those and some samples of rival classes, respectively, and
can be solved only by matrix computations. Therefore, even if the number of classes
is very large, KPCA and KRPCA can be obtained easily compared to SVM and KFD.
Since SVD has a convex criterion and SVM does not have, sample selection for SVM
also needs much computational cost. In practice, the KRPCA with a few thousands of
samples for a class can be obtained by a present personal computer. Furthermore, since
KRPCA extracts features of which mean square error is minimized, it can be used not
only for discrimination but also for analysis.

5 Conclusion

We proposed the theory of the kernel relative principal component analysis (KRPCA).
KRPCA can extract the principal components of a signal while suppressing the effects
of other signals. We provided its definition and a solution. In order to show the ad-
vantage of KRPCA, we provided an experimental example of handwritten character
recognition.
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