Skip to main content

Analysing Similarity Essence for Case Based Recommendation

  • Conference paper
Advances in Case-Based Reasoning (ECCBR 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3155))

Included in the following conference series:

  • 1205 Accesses

Abstract

Initial successes in the area of recommender systems have led to considerable early optimism. However as a research community, we are still in the early days of our understanding of these applications and their capabilities. Evaluation metrics continue to be refined but we still need to account for the relative contributions of the various knowledge elements that play a part in the recommendation process. In this paper, we make a fine-grained analysis of a successful case-based recommendation approach, providing an ablation study of similarity knowledge and similarity metric contributions to improved system performance. In particular, we extend our earlier analyses to examine how measures of interestingness can be used to identify and analyse relative contributions of segments of similarity knowledge. We gauge the strengths and weaknesses of knowledge components and discuss future work as well as implications for research in the area.

The support of the Informatics Research Initiative of Enterprise Ireland is gratefully acknowledged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Resnick, P., Varian, H.R.: Recommender Systems. Communications of the ACM 40, 56–58 (1997)

    Article  Google Scholar 

  2. Burke, R.: Hybrid Recommender Systems: Survey and Experiments. User Modeling and User-Adapted Interaction 12, 331–370 (2002)

    Article  MATH  Google Scholar 

  3. McJones, P.: Eachmovie Collaborative Filtering Dataset, DEC Systems Research Center, http://www.research.compaq.com/src/eachmovie/ (1997)

  4. Konstan, J.A., Miller, B.N., et al.: Grouplens: Applying Collaborative Filtering to Usenet News. Communications of the ACM 40, 77–87 (1997)

    Article  Google Scholar 

  5. Rosenstein, M., Lochbaum, C.: Recommending from Content: Preliminary Results from an E-Commerce Experiment. In: CHI 2000, pp. 291–292. ACM Press, New York (2000)

    Google Scholar 

  6. Smyth, B., Cotter, P.: Personalized Electronic Programme Guides. Artificial Intelligence Magazine 22, 89–98 (2001)

    Article  Google Scholar 

  7. Hayes, C., Cunningham, P., Smyth, B.: A Case-Based View of Automated Collaborative Filtering. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 234–248. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Burke, R.: A case-based reasoning approach to collaborative filtering. In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS (LNAI), vol. 1898, pp. 370–379. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Sarwar, B., Karypis, G., et al.: Item-based Collaborative Filtering Recommendation Algorithms. In: Proceedings of the 10th International WWW Conference, pp. 285–295. ACM Press, New York (2001)

    Chapter  Google Scholar 

  10. Sarwar, B., Karypis, G., et al.: Analysis of Recommendation Algorithms for ECommerce. In: Proceedings of the 2nd ACM Conference on Electronic Commerce, pp. 158–167. ACM Press, New York (2000)

    Chapter  Google Scholar 

  11. O’Sullivan, D., Wilson, D., Smyth, B.: Using Collaborative Filtering Data in Casebased Recommendation. In: Haller, S.M., Simmons, G. (eds.) Proceedings of the 15th International FLAIRS Conference, pp. 121–128. AAAI Press, Menlo Park (2002)

    Google Scholar 

  12. O’Sullivan, D., Wilson, D., Smyth, B.: Preserving Recommender Accuracy and Diversity in Sparse Datasets. In: Russell, I., Haller, S. (eds.) Proceedings of the 16th International FLAIRS Conference, pp. 139–144. AAAI Press, Menlo Park (2003)

    Google Scholar 

  13. O’Sullivan, D., Smyth, B., Wilson, D.: In-Depth Analysis of Similarity Knowledge and Metric Contributions to Recommender Performance. In: Proceedings of the 17th International FLAIRS Conference (2004) (in Press)

    Google Scholar 

  14. McKenna, E., Smyth, B.: Competence-guided case-base editing techniques. In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS (LNAI), vol. 1898, pp. 186–197. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  15. Agrawal, R., Mannila, H., et al.: Fast Discovery of Association Rules. In: Fayyad, U.M., et al. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 307–328. MIT Press, Cambridge (1996)

    Google Scholar 

  16. Goldberg, K., Roeder, T., et al.: Eigentaste: A Constant Time Collaborative Filtering Algorithm. Information Retrieval Journal 4, 133–151 (2001)

    Article  MATH  Google Scholar 

  17. Foltz, P.W.: Using Latent Semantic Indexing for Information Filtering. In: Conference on Office Information Systems, pp. 40–47. ACM Press, New York (1990)

    Chapter  Google Scholar 

  18. Honda, K., Sugiura, N., et al.: Collaborative Filtering Using Principal Component Analysis and Fuzzy Clustering. In: Zhong, N., Yao, Y., Ohsuga, S., Liu, J. (eds.) WI 2001. LNCS (LNAI), vol. 2198, pp. 394–402. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  19. Tan, P.N., Kumar, V., et al.: Selecting the Right Interestingness Measure for Association Patterns. In: Proceedings of the 8th ACM SIGKDD Conference, pp. 32–41 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

O’Sullivan, D., Smyth, B., Wilson, D.C. (2004). Analysing Similarity Essence for Case Based Recommendation. In: Funk, P., González Calero, P.A. (eds) Advances in Case-Based Reasoning. ECCBR 2004. Lecture Notes in Computer Science(), vol 3155. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28631-8_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28631-8_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22882-0

  • Online ISBN: 978-3-540-28631-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics