Skip to main content

Neural Network Combines with a Rotational Invariant Feature Set in Texture Classification

  • Conference paper
PRICAI 2004: Trends in Artificial Intelligence (PRICAI 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3157))

Included in the following conference series:

  • 1021 Accesses

Abstract

In this paper, a new combine method for texture description is introduced, which has successfully applied to pollen surface image discrimination in combination with a multilayer perceptron (MLP) neural network. Through wavelet decomposition and a details reconstruction process, a set of rotation invariant statistic features was formed to characterize textures. In this method, the joint probability of a grey level image and its corresponding details image was calculated. By using MLP as classifier, in experiments with sixteen types of airborne pollen grains, more than 95 percent pollen images were correctly classified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ojala, T., Pietikainen, M.: A comparative study of texture measures with classification based on feature distributions. Pattern Recognition 29(1), 51–59 (1996)

    Article  Google Scholar 

  2. Randen, T., HusØy, H.J.: Filtering for texture classification: A comparative study. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(4), 291–310 (1999)

    Article  Google Scholar 

  3. Reed, T.R., Buf, J.M.H.: A review of recent texture segmentation and feature extraction techniques. Computer Vision, Image Processing and Graphics 57(3), 359–372 (1993)

    Article  Google Scholar 

  4. Haralick, R.M., Shanmugam, K., Dinstein, I.: Texture features for image classification. IEEE Trans. on Sys, Man, and Cyb. SMC-3(6) (1973)

    Google Scholar 

  5. Kaplan, L.M., et al.: Fast texture database retrieval using extended fractal features. In: Sethi, I.K., Jain, R.C. (eds.) Storage and Retrieval for Image and Video Databases VI. Proc. SPIE 3312, pp. 162–173 (1998)

    Google Scholar 

  6. Smith, J.R., Chang, S.: Transform features for texture classification and discrimination in large image databases. In: Proc. IEEE Int. Conf. on Image Proc. (1994)

    Google Scholar 

  7. Gross, M.H., Koch, R., Lippert, L., Dreger, A.: Multiscale image texture analysis in wavelet spaces. In: Proc. IEEE Int. Conf. on Image Proc. (1994)

    Google Scholar 

  8. Thyagarajan, K.S., Nguyen, T., Persons, C.: A maximum likelihood approach to texture classification using wavelet transform. In: Proc. IEEE Int. Conf. on Image Proc. (1994)

    Google Scholar 

  9. Do, M.N., Vetterli, M.: Texture similarity measurement using Kullback-Leibler distance on wavelet subbands. In: Proc. of IEEE Int. Conf. on Image Proc. (2000)

    Google Scholar 

  10. Ma, W.Y., Manjunath, B.S.: A texture thesaurus for browsing large aerial photographs. Journal of the American Society for Information Science 49(7), 633–648 (1998)

    Article  Google Scholar 

  11. Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of large image data. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 837–842 (1996)

    Article  Google Scholar 

  12. Charalampidis, D., Kasparis, T.: Wavelet-based rotational invariant roughness features for texture classification and segmentation. IEEE Trans. on Image Proc. 11(8), 825–837 (2002)

    Article  Google Scholar 

  13. Jain, A.K., Farrokhnia, F.: Unsupervised Texture Segmentation Using Gabor Filters. Pattern Recognition 2(4), 1167–1186 (1991)

    Article  Google Scholar 

  14. Laws, K.I.: Textured image segmentation, PhD Thesis, University of Southern California, Electrical Engineering (1980)

    Google Scholar 

  15. Siew, L.H., Hodgson, R.M., Wood, E.J.: Texture Measures for Carpet Wear Assess-ment. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-10, 92–105 (1988)

    Article  Google Scholar 

  16. Hu, M.K.: Visual Pattern Recognition by Moment Invariants. IRE Transactions on Information Theory IT-8, 179–187 (1962)

    Google Scholar 

  17. Smith, G., Burns, I.: Measuring texture classification algorithms. Pattern Recognition Letters 18, 1495–1501 (1997)

    Article  MATH  Google Scholar 

  18. Benyon, F.H.L., Jones, A.S., Tovey, E.R., Stone, G.: Differentiation of allergenic fungal spores by image analysis, with application to aerobiological counts. Aerobiologia 15, 211–223 (2000)

    Article  Google Scholar 

  19. France, I., Duller, A.W.G., Lamb, H.F., Duller, G.A.T.: A comparative study of model based and neural network based approaches to automatic pollen identification. In: British Machine Vision Conference, vol. 1, pp. 340–349 (1997)

    Google Scholar 

  20. Jones, A.S.: Image analysis applied for aerobiology. In: 2nd European Symposium on Aerobiology, Vienna, Austria, p. 2 (2000)

    Google Scholar 

  21. Taylor, P.E., Flagan, R.C., Valenta, R., Glovsky, M.M.: Release of allergens as respirable aerosols: a link between grass pollen and asthma. Journal of Allergy and Clinical Immunology 109, 51–55 (2002)

    Article  Google Scholar 

  22. Stillman, E.C., Flenley, J.R.: The needs and prospects for automation in palynology. Quaternary Science Reviews 15, 15 (1996)

    Article  Google Scholar 

  23. Fountain, D.W.: Pollen and inhalant allergy. Biologist 49(1), 5–9 (2002)

    MathSciNet  Google Scholar 

  24. Trelor, W.J.: Digital image processing techniques and their application to the automation of palynology, Ph. D. Thesis, University of Hull, Hull UK (1992)

    Google Scholar 

  25. Li, P., Flenley, J.R.: Pollen texture identification using neural networks. Grana 38, 59–64 (1999)

    Article  Google Scholar 

  26. Langford, M., Taylor, G.E., Flenley, J.R.: Computerised identification of pollen grains by texture analysis. Review of Palaeobotany and Palynology 64, 197–203 (1990)

    Article  Google Scholar 

  27. Ronneberger, O.: Automated pollen recognition using grey scale invariants on 3D volume image data. In: 2nd European Symposium on Aerobiology, Vienna, Austria, p. 3 (2000)

    Google Scholar 

  28. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, San Diego (1998)

    MATH  Google Scholar 

  29. Pandya, A.S., Macy, R.B.: Pattern Recognition with Neural Networks in C++. CRC and IEEE Press, Florida (1996)

    Google Scholar 

  30. http://sipi.usc.edu/services/database/database.cgi?volume=textures

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, Y., Wang, R. (2004). Neural Network Combines with a Rotational Invariant Feature Set in Texture Classification. In: Zhang, C., W. Guesgen, H., Yeap, WK. (eds) PRICAI 2004: Trends in Artificial Intelligence. PRICAI 2004. Lecture Notes in Computer Science(), vol 3157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28633-2_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28633-2_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22817-2

  • Online ISBN: 978-3-540-28633-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics