Skip to main content

On Modalities for Vague Notions

  • Conference paper
Advances in Artificial Intelligence – SBIA 2004 (SBIA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3171))

Included in the following conference series:

  • 2853 Accesses

Abstract

We examine modal logical systems, with generalized operators, for the precise treatment of vague notions such as ‘often’, ‘a meaningful subset of a whole’, ‘most’, ‘generally’ etc. The intuition of ‘most’ as “all but for a ‘negligible’ set of exceptions” is made precise by means of filters. We examine a modal logic, with a new modality for a local version of ‘most’ and present a sound and complete axiom system. We also discuss some variants of this modal logic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barwise, J., Cooper, R.: Generalized quantifiers and natural language. Linguistics and Philosophy 4, 159–219 (1981)

    Article  MATH  Google Scholar 

  2. Barwise, J., Feferman, S.: Model-Theoretic Logics. Springer, New York (1985)

    Google Scholar 

  3. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  4. Chang, C., Keisler, H.: Model Theory. North-Holland, Amsterdam (1973)

    MATH  Google Scholar 

  5. Carnielli, W., Veloso, P.: Ultrafilter logic and generic reasoning. In: Abstr. Workshop on Logic, Language, Information and Computation, Recife (1994)

    Google Scholar 

  6. Chandy, K., Lamport, L.: Distributed Snapshot: Determining Global States of Distributed Systems. ACM Transactions on Computer Systems 3, 63–75 (1985)

    Article  Google Scholar 

  7. Enderton, H.: A Mathematical Introduction to Logic. Academic Press, New York (1972)

    MATH  Google Scholar 

  8. Goranko, V., Passy, S.: Using the Universal Modality: Gains and Questions. Journal of Logic and Computation 2, 5–30 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Osborne, M., Rubinstein, A.: A Course in Game Theory. MIT, Cambrige (1998)

    Google Scholar 

  10. Schelechta, K.: Default as generalized quantifiers. Journal of Logic and Computation 5, 473–494 (1995)

    Article  MathSciNet  Google Scholar 

  11. Turner, W.: Logics for Artificial Intelligence. Ellis Horwood, Chichester (1984)

    Google Scholar 

  12. Veloso, P.: On ‘almost all’ and some presuppositions. Manuscrito XXII, 469–505 (1999)

    Google Scholar 

  13. Veloso, P.: On modulated logics for ‘generally’. In: EBL 2003 (2003)

    Google Scholar 

  14. Venema, Y.: A crash course in arrow logic. In: Marx, M., Pólos, L., Masuch, M. (eds.) Arrow Logic and Multi-Modal logic, pp. 3–34. CSLI, Stanford (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Benevides, M., Delgado, C., de Freitas, R.P., Veloso, P.A.S., Veloso, S.R.M. (2004). On Modalities for Vague Notions. In: Bazzan, A.L.C., Labidi, S. (eds) Advances in Artificial Intelligence – SBIA 2004. SBIA 2004. Lecture Notes in Computer Science(), vol 3171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28645-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28645-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23237-7

  • Online ISBN: 978-3-540-28645-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics